Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 22(8): 759-778, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-38743057

RESUMO

Targeting exhausted CD8+ T-cell (TEX)-induced aggravated cancer stem cells (CSC) holds immense therapeutic potential. In this regard, immunomodulation via Neem Leaf Glycoprotein (NLGP), a plant-derived glycoprotein immunomodulator is explored. Since former reports have proven immune dependent-tumor restriction of NLGP across multiple tumor models, we hypothesized that NLGP might reprogram and rectify TEX to target CSCs successfully. In this study, we report that NLGP's therapeutic administration significantly reduced TEX-associated CSC virulence in in vivo B16-F10 melanoma tumor model. A similar trend was observed in in vitro generated TEX and B16-F10/MCF7 coculture setups. NLGP rewired CSCs by downregulating clonogenicity, multidrug resistance phenotypes and PDL1, OCT4, and SOX2 expression. Cell cycle analysis revealed that NLGP educated-TEX efficiently pushed CSCs out of quiescent phase (G0G1) into synthesis phase (S), supported by hyper-phosphorylation of G0G1-S transitory cyclins and Rb proteins. This rendered quiescent CSCs susceptible to S-phase-targeting chemotherapeutic drugs like 5-fluorouracil (5FU). Consequently, combinatorial treatment of NLGP and 5FU brought optimal CSC-targeting efficiency with an increase in apoptotic bodies and proapoptotic BID expression. Notably a strong nephron-protective effect of NLGP was also observed, which prevented 5FU-associated toxicity. Furthermore, Dectin-1-mediated NLGP uptake and subsequent alteration of Notch1 and mTOR axis were deciphered as the involved signaling network. This observation unveiled Dectin-1 as a potent immunotherapeutic drug target to counter T-cell exhaustion. Cumulatively, NLGP immunotherapy alleviated exhausted CD8+ T-cell-induced CSC aggravation. Implications: Our study recommends that NLGP immunotherapy can be utilized to counter ramifications of T-cell exhaustion and to target therapy elusive aggressive CSCs without evoking toxicity.


Assuntos
Azadirachta , Linfócitos T CD8-Positivos , Glicoproteínas , Células-Tronco Neoplásicas , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Camundongos , Azadirachta/química , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Glicoproteínas/farmacologia , Glicoproteínas/metabolismo , Humanos , Folhas de Planta , Linhagem Celular Tumoral , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/metabolismo , Melanoma Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL
2.
J Nanobiotechnology ; 22(1): 285, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796426

RESUMO

BACKGROUND: Therapeutic management of locally advanced and metastatic triple negative breast cancer (TNBC) is often limited due to resistance to conventional chemotherapy. Metastasis is responsible for more than 90% of breast cancer-associated mortality; therefore, the clinical need to prevent or target metastasis is immense. The epithelial to mesenchymal transition (EMT) of cancer stem cells (CSCs) is a crucial determinant in metastasis. Doxorubicin (DOX) is the frequently used chemotherapeutic drug against TNBC that may increase the risk of metastasis in patients. After cancer treatment, CSCs with the EMT characteristic persist, which contributes to advanced malignancy and cancer recurrence. The latest developments in nanotechnology for medicinal applications have raised the possibility of using nanomedicines to target these CSCs. Hence, we present a novel approach of combinatorial treatment of DOX with dietary indole 3,3'-diindolylmethane (DIM) which is an intriguing field of research that may target CSC mediated EMT induction in TNBC. For efficient delivery of both the compounds to the tumor niche, advance method of drug delivery based on exosomes sheathed with mesoporous silica nanoparticles may provide an attractive strategy. RESULTS: DOX, according to our findings, was able to induce EMT in CSCs, making the breast cancer cells more aggressive and metastatic. In CSCs produced from spheres of MDAMB-231 and 4T1, overexpression of N-cadherin, Snail, Slug, and Vimentin as well as downregulation of E-cadherin by DOX treatment not only demonstrated EMT induction but also underscored the pressing need for a novel chemotherapeutic combination to counteract this detrimental effect of DOX. To reach this goal, DIM was combined with DOX and delivered to the CSCs concomitantly by loading them in mesoporous silica nanoparticles encapsulated in exosomes (e-DDMSNP). These exosomes improved the specificity, stability and better homing ability of DIM and DOX in the in vitro and in vivo CSC niche. Furthermore, after treating the CSC-enriched TNBC cell population with e-DDMSNP, a notable decrease in DOX mediated EMT induction was observed. CONCLUSION: Our research seeks to propose a new notion for treating TNBC by introducing this unique exosomal nano-preparation against CSC induced EMT.


Assuntos
Doxorrubicina , Transição Epitelial-Mesenquimal , Exossomos , Indóis , Nanopartículas , Células-Tronco Neoplásicas , Dióxido de Silício , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/química , Indóis/química , Indóis/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Humanos , Exossomos/metabolismo , Dióxido de Silício/química , Feminino , Linhagem Celular Tumoral , Nanopartículas/química , Animais , Porosidade , Sistemas de Liberação de Medicamentos/métodos
3.
Stem Cell Rev Rep ; 19(5): 1283-1306, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36952080

RESUMO

Intra-tumoral heterogeneity is maintained by cancer stem cells (CSCs) with dysregulated self-renewal and asymmetric cell division (ACD). According to the cancer stem cell theory, by ACD a CSC can generate two daughter progenies with different fates such as one cancer stem cell and one differentiated cell. Therefore, this type of mitotic division supports vital process of the maintenance of CSC population. But this CSC pool reservation by ACD complicates the treatment of cancer patients, as CSCs give rise to aggressive clones which are prone to metastasis and drug-insensitivity. Hence, identification of therapeutic modalities which can target ACD of cancer stem cell is an intriguing part of cancer research. In this review, other than the discussion about the extrinsic inducers of ACD role of different proteins, miRNAs and lncRNAs in this type of cell division is also mentioned. Other than these, mode of action of the proven and potential drugs targeting ACD of CSC is also discussed here.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células-Tronco Neoplásicas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Diferenciação Celular , Divisão Celular
4.
Molecules ; 27(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014432

RESUMO

Advancement in novel target detection using improved molecular cancer biology has opened up new avenues for promising anti-cancer drug development. In the past two decades, the mechanism of tumor hypoxia has become more understandable with the discovery of hypoxia-inducible factor-1α (HIF-1α). It is a major transcriptional regulator that coordinates the activity of various transcription factors and their downstream molecules involved in tumorigenesis. HIF-1α not only plays a crucial role in the adaptation of tumor cells to hypoxia but also regulates different biological processes, including cell proliferation, survival, cellular metabolism, angiogenesis, metastasis, cancer stem cell maintenance, and propagation. Therefore, HIF-1α overexpression is strongly associated with poor prognosis in patients with different solid cancers. Hence, pharmacological targeting of HIF-1α has been considered to be a novel cancer therapeutic strategy in recent years. In this review, we provide brief descriptions of natural and synthetic compounds as HIF-1α inhibitors that have the potential to accelerate anticancer drug discovery. This review also introduces the mode of action of these compounds for a better understanding of the chemical leads, which could be useful as cancer therapeutics in the future.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias/tratamento farmacológico , Neovascularização Patológica/metabolismo
5.
Heliyon ; 7(1): e05923, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33458435

RESUMO

The present wellbeing worry to the whole world is the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called COVID-19. This global health crisis first appeared in Wuhan, China around December 2019 and due to its extremely contagious nature it had spread to almost 187 countries. Still now no effective method of treatment or vaccine is developed for controlling the disease. Therefore, the sole obliging strategy is to take precautionary measures by repurposing drugs from the pre-existing library of therapeutically potent molecules. In this situation of pandemic this repurposing technique may save the labour-intensive and tiresome process of new drug development. Orientin is a natural flavonoid with several beneficial effects. This phytochemical can be isolated from different plants like tulsi or holy basil, black bamboo, passion flowers etc. It's antiviral, anti-inflammation, vasodilatation, cardioprotective, radioprotective, neuroprotective, anticarcinogenic and antinociceptive effects are already established. In this research, it is intriguing to find out whether this molecule can interfere the interaction of SARS-CoV-2 spike glycoprotein and their host receptor GRP78. Our in silico docking and molecular dynamics simulation results indicate the binding of Orientin in the overlapping residues of GRP78 binding region of SARS-CoV-2 spike model and SARS-CoV-2 spike model binding region of GRP78 substrate-binding domain. Therefore, the results included in this research work provide a strong possibility of using Orientin as a promising precautionary or therapeutic measure for COVID-19.

6.
Chem Biol Interact ; 290: 19-36, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29775573

RESUMO

Various epidemiological and preclinical studies have already established the cancer chemopreventive potential of naturally occurring glucosinolate breakdown product Indole-3-Carbinol (I3C) as well as its abilities to induce selective cell death towards malignant cell. Therefore, the objective of the present study is to improve the therapeutic efficacy and prevention of doxorubicin (DOX)-induced toxicity, by the concurrent use of Indole-3-Carbinol (I3C). In this study, I3C was administered (20 mg/kg b.w., p.o.) to breast adenocarcinoma (Ehrlich ascites carcinoma) induced solid tumor bearing mice alone as well as in combination with DOX (5 mg/kg b.w., i.p.) in concomitant and pretreatment schedule. The results showed that concurrent administration of I3C and DOX significantly (P < 0.05) improved therapeutic efficacy as evidenced by reduction of tumor size and enhancement of host survivability. Oral administration of I3C significantly (P < 0.05) inhibited the expression of NF-κß in both tumor cells and cardiac tissue as well as maximizes the therapeutic outcome in terms of tumor cell killing and toxicity. In addition, I3C sensitized tumor cells to DOX-therapy by down-regulating the expression of anti-apoptotic protein Bcl-2 and by up-regulating molecules like Bax, cytochrome c, caspases, which led to PARP cleavage and apoptosis. Significant inhibition of angiogenesis along with reduction in the serum levels of VEGF-A and MMP-9 further contribute to the sensitization accomplished by I3C. Moreover, we also found that I3C provided additional host survival advantages by attenuated DOX-induced toxicities through modulation of Nrf2/ARE pathway and promoted expression of cytoprotective proteins HO-1, NQO1 and GSTπ in cardiac tissue. In addition, I3C significantly attenuated DOX-induced inflammation by down-regulation of NF-kß, iNOS, COX-2 and IL-6 in cardiac tissue. Thus, the present study clearly suggested therapeutic benefit of I3C in combination with DOX by augmenting anticancer efficacy and diminishing toxicity to the host.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Indóis/farmacologia , Mitocôndrias/metabolismo , Animais , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Feminino , Indóis/uso terapêutico , Metaloproteinase 9 da Matriz/sangue , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , NF-kappa B/genética , NF-kappa B/metabolismo , Neovascularização Patológica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transplante Heterólogo , Regulação para Cima/efeitos dos fármacos
7.
Biomed Pharmacother ; 101: 228-243, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29494960

RESUMO

Doxorubicin (DOX) is an anthracycline group of antibiotic available for the treatment of broad spectrum of human cancers. However, patient receiving DOX-therapy, myelosuppression and genotoxicity which may lead to secondary malignancy and dose dependent cardiotoxicity is an imperative adverse effect. Mechanisms behind the DOX-induced toxicities are increased level of oxidative damage, inflammation and apoptosis. Therefore, in search of a potential chemoprotectant, naturally occurring glucosinolate breakdown product Indole-3-Carbinol (I3C) was evaluated against DOX-induced toxicities in Swiss albino mice. DOX was administered (5 mg/kg b.w., i.p.) and I3C was administered (20 mg/kg b.w., p.o.) in concomitant and 15 days pretreatment schedule. Results of the present study showed that I3C appreciably mitigated DOX-induced chromosomal aberrations, micronuclei formation, DNA damage and apoptosis in bone marrow niche. Histopathological observations revealed that DOX-intoxication resulted in massive structural and functional impairment of heart and bone marrow niche. However, oral administration of I3C significantly attenuated DOX-induced oxidative stress in the cardiac tissues as evident from decreased levels of ROS/RNS and lipid peroxidation, and by increased level of glutathione (reduced) and the activity of phase-II antioxidant enzymes. Additionally, administration of I3C significantly (P < 0.05) stimulated Nrf2-mediated activation of antioxidant response element (ARE) pathway and promoted expression of cytoprotective proteins heme oxygenase 1 (HO-1), NAD(P)H:quinine oxidoreductase 1 (NQO1) and GSTπ in bone marrow and cardiac tissues. In connection with that, I3C significantly attenuated DOX-induced inflammation by downregulation of pro-inflammatory mediators, viz., NF-kß(p50), iNOS, COX-2 and IL-6 expression. Moreover, I3C attenuate DOX-induced apoptosis by up-regulation of Bcl2 and down-regulation of Bax and caspase-3 expression in bone marrow cells. Thus, this study suggests that I3C has promising chemoprotective efficacy against DOX-induced toxicities and indicates its future use as an adjuvant in chemotherapy.


Assuntos
Cardiotoxicidade/prevenção & controle , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/toxicidade , Indóis/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Elementos de Resposta Antioxidante/efeitos dos fármacos , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
8.
Sci Rep ; 8(1): 2194, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391414

RESUMO

A newly designed organoselenium compound, methyl substituted umbelliferone selenocyanate (MUS), was synthesized as a primary hit against the myelotoxic activity of carboplatin. MUS was administered at 6 mg/kg b.wt, p.o. in concomitant and pretreatment schedules with carboplatin (12 mg/kg b.wt, i.p. for 10 days) in female Swiss albino mouse. MUS treatment reduced (P < 0.001) the percentage of chromosomal aberrations, micronuclei formation, DNA damage and apoptosis in murine bone marrow cells and also enhanced (P < 0.001) the bone marrow cell proliferation of the carboplatin-treated mice. These activities cumulatively restored the viable bone marrow cell count towards normalcy. Myeloprotection by MUS was achieved, in part, due to a significant reduction in the ROS/RNS formation and restoration of glutathione redox pool. Additionally, MUS synergistically enhanced the cytotoxicity of carboplatin against two human cancer cell lines (MCF-7 and Colo-205). Furthermore, MUS can effectively potentiate the antitumour activity of carboplatin against two murine cancers (Dalton's Lymphoma and Sarcoma-180) in vivo. These preclinical findings clearly indicate that MUS can improve the therapeutic index of carboplatin and ensures more effective therapeutic strategy against cancer for clinical development.


Assuntos
Antineoplásicos/farmacologia , Cumarínicos/química , Desenho de Fármacos , Linfoma/tratamento farmacológico , Mielopoese/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Sarcoma Experimental/tratamento farmacológico , Animais , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose , Proliferação de Células , Quimioterapia Adjuvante , Aberrações Cromossômicas , Dano ao DNA/efeitos dos fármacos , Feminino , Peroxidação de Lipídeos , Linfoma/patologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Sarcoma Experimental/patologia , Células Tumorais Cultivadas
9.
Free Radic Res ; 51(9-10): 812-827, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28922986

RESUMO

The most crucial complication related to doxorubicin (DOX) therapy is nonspecific cytotoxic effect on healthy normal cells. The clinical use of this broad-spectrum chemotherapeutic agent is restricted due to development of severe form of cardiotoxicity, myelosuppression, and genotoxicity which interfere with therapeutic schedule, compromise treatment outcome and may lead to secondary malignancy. 3,3'-diindolylmethane (DIM) is a naturally occurring plant alkaloid formed by the hydrolysis of indolylmethyl glucosinolate (glucobrassicin). Therefore, the present study was undertaken to investigate the protective role of DIM against DOX-induced toxicity in mice. DOX was administered (5 mg/kg b.w., i.p.) and DIM was administered (25 mg/kg b.w., p.o.) in concomitant and 15 days pretreatment schedule. Results showed that DIM significantly attenuated DOX-induced oxidative stress in the cardiac tissues by reducing the levels of free radicals and lipid peroxidation, and by enhancing the level of glutathione (reduced) and the activity of antioxidant enzymes. The chemoprotective potential of DIM was confirmed by histopathological evaluation of heart and bone marrow niche. Moreover, DIM considerably mitigated DOX-induced clastogenicity, DNA damage, apoptosis, and myeloid hyperplasia in bone marrow niche. In addition, oral administration of DIM significantly (p < .05) stimulated the Nrf2-mediated activation of antioxidant response element (ARE) pathway and promoted expression of ARE-driven cytoprotective proteins, HO-1, NQO1, and glutathione-S-transferase (GST). In connection with that, DIM significantly attenuated DOX-induced apoptosis by upregulation of Bcl-2 expression and downregulation of Bax and caspase-3 expression. Thus, this study suggests that DIM has promising chemoprotective efficacy against DOX-induced toxicity and indicates its future use as an adjuvant in chemotherapy.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiotônicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/toxicidade , Indóis/farmacologia , Alanina Transaminase/sangue , Animais , Elementos de Resposta Antioxidante , Antioxidantes , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Células da Medula Óssea/efeitos dos fármacos , Cardiotoxicidade/sangue , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Avaliação Pré-Clínica de Medicamentos , Feminino , Dose Letal Mediana , Peroxidação de Lipídeos , Contagem de Linfócitos , Camundongos , Mutagênicos/toxicidade , Miocárdio/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
Redox Rep ; 22(6): 377-387, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27897082

RESUMO

OBJECTIVE: The present study was designed to investigate the chemoprotective efficacy of an L-cysteine-based oxovanadium (IV) complex, namely, oxovanadium (IV)-L-cysteine methyl ester complex (VC-IV) against cisplatin (CDDP)-induced renal injury in Swiss albino mice. METHODS: CDDP was administered intraperitoneally (5 mg/kg body weight) and VC-IV was administered orally (1 mg/kg body weight) in concomitant and 7 days pre-treatment schedule. RESULTS: CDDP-treated mice showed marked kidney damage and renal failure. Administration of VC-IV caused significant attenuation of renal oxidative stress and elevation of antioxidant status. VC-IV also significantly decreased serum levels of creatinine and blood urea nitrogen, and improved histopathological lesions. Western blot analysis of the kidneys showed that VC-IV treatment resulted in nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) through modulation of cytosolic Kelch-like ECH-associated protein 1. Thus, VC-IV stimulated Nrf2-mediated activation of antioxidant response element (ARE) pathway and promoted expression of ARE-driven cytoprotective proteins, heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1, and enhanced activity of antioxidant enzymes. Interestingly, VC-IV did not alter the bioavailability and renal accumulation of CDDP in mice. DISCUSSION: In this study, VC-IV exhibited strong nephroprotective efficacy by restoring antioxidant defense mechanisms and hence may serve as a promising chemoprotectant in cancer chemotherapy.


Assuntos
Cisplatino/toxicidade , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/metabolismo , Vanadatos/uso terapêutico , Compostos de Vanádio/uso terapêutico , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Feminino , Nefropatias/induzido quimicamente , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Atômica , Vanadatos/administração & dosagem , Compostos de Vanádio/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA