Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 28(10): 263, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37919053

RESUMO

BACKGROUND: Tobacco use by youth is ever-demanding, and it is increasingly distributed not only in India but also globally. Saliva is a complex oral bio-fluid, freely available, performing absolute tasks for maintaining oral health and homeostasis. It contains a plethora of significant constituents such as proline-rich proteins (PRPs), immunoglobulins, IgA, enzymes lysozyme, lactoferrin, peroxidases, amylase, etc. The basic ecological balance of the oral cavity is stabilized via salivary clearance by reduced aggregation and adherence of microorganisms by direct microbial activity. This balance of oral activity is also done by indirect mechanisms by immunological as well as non-immunological means and also by effectively regulating salivary pH flow rate. This institutional observational study was planned to assess and compare salivary parameters (pH, salivary flow rate), total proteins, α-amylase, calcium, phosphate, and IgA, of unstimulated whole saliva of both tobacco abusers and tobacco non-users. METHODS: The Study consisted of 270 participants (Tobacco habit) group, n = 135 and Control (Healthy) group, n = 135 and were in the age range of 20-50 years. They were assessed for oral health status, followed by the analysis of salivary pH, flow rate, total proteins, amylase, calcium, phosphates, and IgA of unstimulated whole saliva. RESULTS: Comparative evaluation of salivary parameters among groups found that varying tobacco abusers had increased salivary amylase, protein levels, and phosphate whereas decreased salivary pH, flow rate, IgA, and in the whole unstimulated saliva samples than those of non-tobacco users. This difference among groups was statistically significant. (p < 0.05), and calcium levels were not altered significantly. CONCLUSIONS: This study concludes that salivary parameters are altered in tobacco abusers when compared to those of non-abusers, and it was more significant in smokeless tobacco abusers than in any other form of tobacco abuse.


Assuntos
Cálcio , Adolescente , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Proteínas e Peptídeos Salivares , Imunoglobulina A , Amilases/análise , Amilases/metabolismo , Fosfatos
2.
J Genet Eng Biotechnol ; 21(1): 82, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556043

RESUMO

BACKGROUND: Human nucleotide triphosphate diphosphatase (NUDT15) is one of the essential proteins involved in the hydrolysis of anti-cancer drugs against leukemia. Polymorphisms in NUDT15 significantly affect the hydrolysis activity that leads to side effects, including leucopenia. Drugs having a better affinity with NUDT15 protein and contributing stable conformation may benefit patients from leucopenia. Most frequent NUDT15 polymorphisms causing structure variability and their association with leukemia were screened. The selected protein variants and anti-cancer drug structures were collected. Further, molecular docking was performed between drugs and NUDT15 variants along with the wild-type. Finally, molecular dynamics were executed for 100 ns to understand the stability of the protein with the anti-cancer drug based on molecular trajectories. RESULTS: Three-dimensional structures of NUDT15 wild, the most frequent variants (Val18Ile, Arg139Cys, and Arg139), and the anti-cancer drugs (azathioprine, mercaptopurine, and thioguanine) were selected and retrieved from structure databases. On molecular docking the binding energies of anti-cancer drugs against NUDT15 structures ranged from - 5.0 to - 5.9 kcal/mol. Among them, azathioprine showed the highest affinities (- 7.3 kcal/mol) for the wild and variant structures. Additionally, the molecular dynamics suggest all analyzed NUDT15 were stable with azathioprine based on the dynamic trajectories. CONCLUSION: Our results suggest azathioprine could be the preferable anti-cancer drug for the population with NUDT15 variants that could effectively be hydrolyzed as evidenced by molecular docking and dynamic simulation.

3.
Brain Sci ; 13(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37508933

RESUMO

Pesticides kill neurons, but the mechanism leading to selective dopaminergic loss in Parkinson's disease (PD) is unknown. Understanding the pesticide's effect on dopaminergic neurons (DA) can help to screen and treat PD. The critical uptake of pesticides by the membrane receptors at DA is hypothesized to activate a signaling cascade and accelerate degeneration. Using MPTP as a reference, we demonstrate the mechanisms of eleven crucial pesticides through molecular docking, protein networks, regulatory pathways, and prioritization of key pesticide-regulating proteins. Participants were recruited and grouped into control and PD based on clinical characteristics as well as pesticide traces in their blood plasma. Then, qPCR was used to measure pesticide-associated gene expression in peripheral blood mononuclear cells between groups. As a result of molecular docking, all eleven pesticides and the MPTP showed high binding efficiency against 274 membrane receptor proteins of DA. Further, the protein interaction networks showed activation of multiple signaling cascades through these receptors. Subsequent analysis revealed 31 biological pathways shared by all 11pesticides and MPTP that were overrepresented by 46 crucial proteins. Among these, CTNNB1, NDUFS6, and CAV1 were prioritized to show a significant change in gene expression in pesticide-exposed PD which guides toward therapy.

4.
Front Oncol ; 13: 1183766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234400

RESUMO

Oral cancer is one of the 19most rapidly progressing cancers associated with significant mortality, owing to its extreme degree of invasiveness and aggressive inclination. The early occurrences of this cancer can be clinically deceiving leading to a poor overall survival rate. The primary concerns from a clinical perspective include delayed diagnosis, rapid disease progression, resistance to various chemotherapeutic regimens, and aggressive metastasis, which collectively pose a substantial threat to prognosis. Conventional clinical practices observed since antiquity no longer offer the best possible options to circumvent these roadblocks. The world of current cancer research has been revolutionized with the advent of state-of-the-art technology-driven strategies that offer a ray of hope in confronting said challenges by highlighting the crucial underlying molecular mechanisms and drivers. In recent years, bioinformatics and Machine Learning (ML) techniques have enhanced the possibility of early detection, evaluation of prognosis, and individualization of therapy. This review elaborates on the application of the aforesaid techniques in unraveling potential hints from omics big data to address the complexities existing in various clinical facets of oral cancer. The first section demonstrates the utilization of omics data and ML to disentangle the impediments related to diagnosis. This includes the application of technology-based strategies to optimize early detection, classification, and staging via uncovering biomarkers and molecular signatures. Furthermore, breakthrough concepts such as salivaomics-driven non-invasive biomarker discovery and omics-complemented surgical interventions are articulated in detail. In the following part, the identification of novel disease-specific targets alongside potential therapeutic agents to confront oral cancer via omics-based methodologies is presented. Additionally, a special emphasis is placed on drug resistance, precision medicine, and drug repurposing. In the final section, we discuss the research approaches oriented toward unveiling the prognostic biomarkers and constructing prediction models to capture the metastatic potential of the tumors. Overall, we intend to provide a bird's eye view of the various omics, bioinformatics, and ML approaches currently being used in oral cancer research through relevant case studies.

5.
Front Oncol ; 13: 1247399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38170015

RESUMO

The clinical management of oral cancer is often frequented with challenges that arise from relapse, recurrence, invasion and resistance towards the cornerstone chemo and radiation therapies. The recent conceptual advancement in oncology has substantiated the role of cancer stem cells (CSC) as a predominant player of these intricacies. CSC are a sub-group of tumor population with inherent adroitness to self-renew with high plasticity. During tumor evolution, the structural and functional reprogramming persuades the cancer cells to acquire stem-cell like properties, thus presenting them with higher survival abilities and treatment resistance. An appraisal on key features that govern the stemness is of prime importance to confront the current challenges encountered in oral cancer. The nurturing niche of CSC for maintaining its stemness characteristics is thought to be modulated by complex multi-layered components encompassing neoplastic cells, extracellular matrix, acellular components, circulatory vessels, various cascading signaling molecules and stromal cells. This review focuses on recapitulating both intrinsic and extrinsic mechanisms that impart the stemness. There are contemplating evidences that demonstrate the role of transcription factors (TF) in sustaining the neoplastic stem cell's pluripotency and plasticity alongside the miRNA in regulation of crucial genes involved in the transformation of normal oral mucosa to malignancy. This review illustrates the interplay between miRNA and various known TF of oral cancer such as c-Myc, SOX, STAT, NANOG and OCT in orchestrating the stemness and resistance features. Further, the cross-talks involved in tumor micro-environment inclusive of cytokines, macrophages, extra cellular matrix, angiogenesis leading pathways and influential factors of hypoxia on tumorigenesis and CSC survival have been elucidated. Finally, external factorial influence of oral microbiome gained due to the dysbiosis is also emphasized. There are growing confirmations of the possible roles of microbiomes in the progression of oral cancer. Given this, an attempt has been made to explore the potential links including EMT and signaling pathways towards resistance and stemness. This review provides a spectrum of understanding on stemness and progression of oral cancers at various regulatory levels along with their current therapeutic knowledge. These mechanisms could be exploited for future research to expand potential treatment strategies.

6.
Healthcare (Basel) ; 10(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36011164

RESUMO

OBJECTIVES: Tobacco consumption is of major concern for public health. Compromised oral hygiene accentuated by tobacco leads to alteration in the oral mucosa and microbiome, including Candida, and its species can be identified rapidly using CHROMagar. Curcumin, a naturally available compound possesses antioxidant, anti-inflammatory, anti-microbial, anti-carcinogenic, anti-fungal, and immunomodulatory properties. Hence, a comprehensive study was planned. AIM: To evaluate and compare cytomorphometric analysis and Candida colonization and speciation in tobacco users before and after the use of curcumin gel. MATERIALS AND METHODS: The study comprised a total of 120 participants (the study (tobacco habit) group, n = 60 and control (healthy) group, n = 60). The intervention was the application of curcumin gel over the lesion area three times daily for 2 months. All participants' oral health status was assessed, followed by cytomorphometric analysis and Candida colonization and speciation using CHROMagar. RESULTS: Cytomorphometric analysis showed statistically significant differences in the control and study group for cell diameter (CD), nuclear diameter (ND), CD:ND ratio, and micronuclei (p = 0.0001). Candida colonization had a significantly higher number of colonies in the habit group when compared to the control group. Candida tropicalis was predominant in the study group, whereas Candida albicans was predominant in the control group. In the study group, after intervention with curcumin, a statistically significant difference was seen in nuclear diameter, CD:ND ratio, and micronuclei. There was a reduction in the number of Candida colonies, and Candida albicans was the predominant species observed in the study group after the intervention of curcumin and discontinuation of habit. CONCLUSION: Curcumin was found to reduce the number of micronuclei and also decreased Candida colonization, along with the discontinuation of habit in tobacco users.

7.
J Food Biochem ; 45(9): e13865, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34263474

RESUMO

In the past decade, the use of marine mussels as seafood is being more popular. They considered being a rich source of various nutritional bioactive compounds that aroused the scientific community's interest. This study investigated the antioxidant and the antithrombotic consequences on Sprague-Dawley male rats after adding dried New Zealand mussel Perna canaliculus in their diet. The biochemical, hematological and histopathological changes were also observed. Forty rats were divided into four groups according to the amount of dried mussels in their diet, in addition to a control group that consumed a basal diet only. Group 1 consumed 25% dried mussels in its basal diet; Group 2 consumed 35% dried mussels in its basal diet, and Group 3 was consumed 45% dried mussels in its basal diet. The biochemical parameters showed improvements in liver function. Interestingly, the lipid profile decreased, especially the low-density lipoprotein cholesterol (LDL-C) levels which were reduced significantly in Group 3 (p < .01). These observations were accompanied by a decrease in iron levels significantly as the amount of dried mussels increased (p < .01). Furthermore, the noticed changes in the hematological profile prove that there is an increase in antithrombotic activity. Dried mussels had potent antioxidant effects in the liver as shown by increased lipid peroxide (p < .05), reduced glutathione (p < .05), and glutathione peroxidase (GSH-Px; p < .05). Additionally, antioxidant activity in the kidney was shown to increase through GSH-Px activity (p < .01). In conclusion, these results indicate that consuming dried mussels resulted in improved biochemical and antioxidants activities and could be used as an antithrombotic agent.


Assuntos
Perna (Organismo) , Animais , Antioxidantes/farmacologia , Fibrinolíticos/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Alimentos Marinhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA