Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biophys Chem ; 282: 106759, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35008010

RESUMO

NK-2, a peptide derived from a cationic core region of NK-lysin, has emerged as a promising candidate for new antibiotics. In contrast to classical antibiotics, antimicrobial peptides target bacterial membranes and disintegrate the membrane by forming the transmembrane pores. However, complete understanding of the precise mechanisms of cellular apoptosis and molecular basis of membrane selectivity is still in dispute. In the present study, we have shown that NK-2 forms trans-membrane pores on negatively charged phospholipid membranes using phase contrast microscopy. As bacteria mimicking membranes, we have chosen large unilamellar vesicles (LUV) and giant unilamellar vesicles (GUV) composed of negatively charged phospholipid, dioleoyl phosphatidyl glycerol (DOPG) and neutral phospholipid, dioleoyl phophatidylcholine (DOPC). Leakage of internal fluid of giant unilamellar vesicles (GUV), leading to decrease in intensity in the halo region of phase contrast micrographs, suggests the formation of transmembrane pores. No such reduction of intensity in the halo region of DOPC was observed, indicating, neutral vesicles does not exhibit pores. Rate constant reckoned from the decaying intensity in the halo region was found to be 0.007 s-1. Further, significant interaction of NK-2 with anionic membranes has been envisaged from zeta potential and dynamic light scattering. Binding free energy and other interaction parameters have been delineated using theoretical ansatz. A proliferation of average Size of anionic LUV on increasing NK-2 concentration indicates membrane-membrane interaction leading to peptide induced large aggregates of vesicles.


Assuntos
Fosfolipídeos , Lipossomas Unilamelares , Ácido 2,4-Diclorofenoxiacético/análogos & derivados , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Peptídeos/química , Fosfatidilcolinas/química , Fosfolipídeos/química , Lipossomas Unilamelares/química
2.
Elife ; 102021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825682

RESUMO

Aggregation of Cu-Zn superoxide dismutase (SOD1) is implicated in the motor neuron disease, amyotrophic lateral sclerosis (ALS). Although more than 140 disease mutations of SOD1 are available, their stability or aggregation behaviors in membrane environment are not correlated with disease pathophysiology. Here, we use multiple mutational variants of SOD1 to show that the absence of Zn, and not Cu, significantly impacts membrane attachment of SOD1 through two loop regions facilitating aggregation driven by lipid-induced conformational changes. These loop regions influence both the primary (through Cu intake) and the gain of function (through aggregation) of SOD1 presumably through a shared conformational landscape. Combining experimental and theoretical frameworks using representative ALS disease mutants, we develop a 'co-factor derived membrane association model' wherein mutational stress closer to the Zn (but not to the Cu) pocket is responsible for membrane association-mediated toxic aggregation and survival time scale after ALS diagnosis.


Amyotrophic lateral sclerosis, or ALS, is an incurable neurodegenerative disease in which a person slowly loses specialized nerve cells that control voluntary movement. It is not fully understood what causes this fatal disease. However, it is suspected that clumps, or aggregates, of a protein called SOD1 in nerve cells may play a crucial role. More than 140 mutations in the gene for SOD1 have been linked to ALS, with varying degrees of severity. But it is still unclear how these mutations cause SOD1 aggregation or how different mutations influence the survival rate of the disease. The protein SOD1 contains a copper ion and a zinc ion, and it is possible that mutations that affect how these two ions bind to SOD1 influences the severity of the disease. To investigate this, Sannigrahi, Chowdhury, Das et al. genetically engineered mutants of the SOD1 protein which each contain only one metal ion. Experiments on these mutated proteins showed that the copper ion is responsible for the protein's role in neutralizing harmful reactive molecules, while the zinc ion stabilizes the protein against aggregation. Sannigrahi et al. found that when the zinc ion was removed, the SOD1 protein attached to a structure inside the cell called the mitochondria and formed toxic aggregates. Sannigrahi et al. then used these observations to build a computational model that incorporated different mutations that have been previously associated with ALS. The model suggests that mutations close to the site where zinc binds to the SOD1 protein increase disease severity and shorten survival time after diagnosis. This model was then experimentally validated using two disease variants of ALS that have mutations close to the sites where zinc or copper binds. These findings still need to be tested in animals and humans to see if these mechanisms hold true in a multicellular organism. This discovery could help design new ALS treatments that target the zinc binding site on SOD1 or disrupt the protein's interactions with the mitochondria.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Membrana Celular/enzimologia , Neurônios/enzimologia , Superóxido Dismutase-1/metabolismo , Zinco/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Sítios de Ligação , Linhagem Celular Tumoral , Membrana Celular/patologia , Cobre/metabolismo , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Neurônios/patologia , Agregados Proteicos , Agregação Patológica de Proteínas , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Superóxido Dismutase-1/genética
3.
Trans Indian Natl Acad Eng ; 6(2): 355-364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35837575

RESUMO

Regular monitoring of electrolyte balance is essential for patients suffering from chronic kidney disease (CKD), particularly those undergoing dialysis. In the context of the recent COVID-19 pandemic, more severe forms of infection are observed in elderly individuals and patients having co-morbidities like CKD. The repeated blood tests for the monitoring of electrolyte balance predispose them not only to COVID-19 but also other to hospital-acquired infections (HAI). Therefore, a non-invasive method for easy detection of essential electrolyte (K+ and Na+) levels is urgently needed. In this study, we developed an optical emission spectroscopy-based non-invasive device for simultaneous monitoring of salivary Na+ and K+ levels in a fast and reliable way. The device consisted of a closed spark chamber, micro-spectrometer, high voltage spark generator, electronic circuits, optical fiber, and an indigenously developed software based on the LabVIEW platform. The optical emission originating from the biological sample (i.e., saliva) due to recombination of ions energized by impingement of electrons returning from high voltage spark provides necessary information about the concentration of electrolytes. A small-scale clinical trial on 30 healthy human subjects shows the potential of the indigenously developed device in determining salivary Na + and K+ concentration. The low-cost, portable, point-of-care device requires only 2 mL of sample, and can simultaneously measure 1.0-190.0 mM Na+, and 1.0-270.9 mM K+ . To our understanding, the present work will find its relevance in combating COVID-19 morbidities, along with regular CKD patient-care.

4.
Front Oncol ; 10: 529132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194588

RESUMO

Molecular interaction of aromatic dyes with biological macromolecules are important for the development of minimally invasive disease diagnostic biotechnologies. In the present work, we have used Toluidine Blue (TB) as a model dye, which is a well-known staining agent for the diagnosis of oral cancer and have studied the interaction of various biological macromolecules (protein and DNA) with the dye at different pH. Our spectroscopic studies confirm that TB interacts with Human Serum Albumin (HSA), a model protein at very high pH conditions which is very hard to achieve physiologically. On the other hand, TB significantly interacts with the DNA at physiological pH value (7.4). Our molecular studies strengthen the understanding of the Toluidine Blue staining of cancer cells, where the relative ratio of the nucleic acids is higher than the normal intracellular content. We have also developed a non-invasive, non-contact spectroscopic technique to explore the possibility of quantitatively detecting oral cancer by exploiting the interaction of TB with DNA. We have also reported development of a prototype named "Oral-O-Scope" for the detection of Oral cancer and have carried out human studies using the prototype.

5.
ACS Chem Biol ; 14(7): 1601-1610, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31241303

RESUMO

Virulent Mycobacterium tuberculosis (MTB) strains cause cell death of macrophages (Mϕ) inside TB granuloma using a mechanism which is not well understood. Many bacterial systems utilize toxins to induce host cell damage, which occurs along with immune evasion. These toxins often use chameleon sequences to generate an environment-sensitive conformational switch, facilitating the process of infection. The presence of toxins is not yet known for MTB. Here, we show that MTB-secreted immunogenic MPT63 protein undergoes a switch from ß-sheet to helix in response to mutational and environmental stresses. MPT63 in its helical form creates pores in both synthetic and Mϕ membranes, while the native ß-sheet protein remains inert toward membrane interactions. Using fluorescence correlation spectroscopy and atomic force microscopy, we show further that the helical form undergoes self-association to produce toxic oligomers of different morphology. Trypan blue and flow cytometry analyses reveal that the helical state can be utilized by MTB for killing Mϕ cells. Collectively, our study emphasizes for the first time a toxin-like behavior of MPT63 induced by an environment-dependent conformational switch, resulting in membrane pore formation by toxic oligomers and Mϕ cell death.


Assuntos
Proteínas de Bactérias/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/metabolismo , Proteínas de Bactérias/química , Morte Celular , Membrana Celular/microbiologia , Membrana Celular/patologia , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/patologia , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Tuberculose/microbiologia , Tuberculose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA