Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Am J Hematol ; 96(9): 1064-1076, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34021930

RESUMO

Identification of stage-specific erythroid cells is critical for studies of normal and disordered human erythropoiesis. While immunophenotypic strategies have previously been developed to identify cells at each stage of terminal erythroid differentiation, erythroid progenitors are currently defined very broadly. Refined strategies to identify and characterize BFU-E and CFU-E subsets are critically needed. To address this unmet need, a flow cytometry-based technique was developed that combines the established surface markers CD34 and CD36 with CD117, CD71, and CD105. This combination allowed for the separation of erythroid progenitor cells into four discrete populations along a continuum of progressive maturation, with increasing cell size and decreasing nuclear/cytoplasmic ratio, proliferative capacity and stem cell factor responsiveness. This strategy was validated in uncultured, primary erythroid cells isolated from bone marrow of healthy individuals. Functional colony assays of these progenitor populations revealed enrichment of BFU-E only in the earliest population, transitioning to cells yielding BFU-E and CFU-E, then CFU-E only. Utilizing CD34/CD105 and GPA/CD105 profiles, all four progenitor stages and all five stages of terminal erythroid differentiation could be identified. Applying this immunophenotyping strategy to primary bone marrow cells from patients with myelodysplastic syndrome, identified defects in erythroid progenitors and in terminal erythroid differentiation. This novel immunophenotyping technique will be a valuable tool for studies of normal and perturbed human erythropoiesis. It will allow for the discovery of stage-specific molecular and functional insights into normal erythropoiesis as well as for identification and characterization of stage-specific defects in inherited and acquired disorders of erythropoiesis.


Assuntos
Células Eritroides/citologia , Células Precursoras Eritroides/citologia , Eritropoese , Antígenos CD/análise , Antígenos CD34/análise , Células da Medula Óssea/citologia , Células Cultivadas , Endoglina/análise , Citometria de Fluxo/métodos , Humanos , Imunofenotipagem/métodos
2.
J Clin Invest ; 130(4): 2097-2110, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961825

RESUMO

Despite the effective clinical use of steroids for the treatment of Diamond Blackfan anemia (DBA), the mechanisms through which glucocorticoids regulate human erythropoiesis remain poorly understood. We report that the sensitivity of erythroid differentiation to dexamethasone is dependent on the developmental origin of human CD34+ progenitor cells, specifically increasing the expansion of CD34+ progenitors from peripheral blood (PB) but not cord blood (CB). Dexamethasone treatment of erythroid-differentiated PB, but not CB, CD34+ progenitors resulted in the expansion of a newly defined CD34+CD36+CD71hiCD105med immature colony-forming unit-erythroid (CFU-E) population. Furthermore, proteomics analyses revealed the induction of distinct proteins in dexamethasone-treated PB and CB erythroid progenitors. Dexamethasone treatment of PB progenitors resulted in the specific upregulation of p57Kip2, a Cip/Kip cyclin-dependent kinase inhibitor, and we identified this induction as critical; shRNA-mediated downregulation of p57Kip2, but not the related p27Kip1, significantly attenuated the impact of dexamethasone on erythroid differentiation and inhibited the expansion of the immature CFU-E subset. Notably, in the context of DBA, we found that steroid resistance was associated with dysregulated p57Kip2 expression. Altogether, these data identify a unique glucocorticoid-responsive human erythroid progenitor and provide new insights into glucocorticoid-based therapeutic strategies for the treatment of patients with DBA.


Assuntos
Anemia de Diamond-Blackfan/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/biossíntese , Dexametasona/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Regulação para Cima/efeitos dos fármacos , Adulto , Anemia de Diamond-Blackfan/tratamento farmacológico , Anemia de Diamond-Blackfan/patologia , Antígenos CD/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Células Precursoras Eritroides/patologia , Feminino , Humanos , Masculino
3.
Cell Rep ; 28(11): 2996-3009.e7, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509757

RESUMO

Mammalian erythropoiesis yields a highly specialized cell type, the mature erythrocyte, evolved to meet the organismal needs of increased oxygen-carrying capacity. To better understand the regulation of erythropoiesis, we performed genome-wide studies of chromatin accessibility, DNA methylation, and transcriptomics using a recently developed strategy to obtain highly purified populations of primary human erythroid cells. The integration of gene expression, DNA methylation, and chromatin state dynamics reveals that stage-specific gene regulation during erythropoiesis is a stepwise and hierarchical process involving many cis-regulatory elements. Erythroid-specific, nonpromoter sites of chromatin accessibility are linked to erythroid cell phenotypic variation and inherited disease. Comparative analyses of stage-specific chromatin accessibility indicate that there is limited early chromatin priming of erythroid genes during hematopoiesis. The epigenome of terminally differentiating erythroid cells defines a distinct subset of highly specialized cells that are vastly dissimilar from other hematopoietic and nonhematopoietic cell types. These epigenomic and transcriptome data are powerful tools to study human erythropoiesis.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/metabolismo , Células Eritroides/metabolismo , Eritropoese/genética , Células-Tronco Hematopoéticas/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Cromatina/genética , Metilação de DNA/genética , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Doenças Hematológicas/genética , Humanos , Família Multigênica , Polimorfismo de Nucleotídeo Único , Transcriptoma
4.
Blood ; 132(22): 2406-2417, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30254129

RESUMO

Myelodysplastic syndromes (MDSs) are clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis. Anemia is the defining cytopenia of MDS patients, yet the molecular mechanisms for dyserythropoiesis in MDSs remain to be fully defined. Recent studies have revealed that heterozygous loss-of-function mutation of DNA dioxygenase TET2 is 1 of the most common mutations in MDSs and that TET2 deficiency disturbs erythroid differentiation. However, mechanistic insights into the role of TET2 on disordered erythropoiesis are not fully defined. Here, we show that TET2 deficiency leads initially to stem cell factor (SCF)-dependent hyperproliferation and impaired differentiation of human colony-forming unit-erythroid (CFU-E) cells, which were reversed by a c-Kit inhibitor. We further show that this was due to increased phosphorylation of c-Kit accompanied by decreased expression of phosphatase SHP-1, a negative regulator of c-Kit. At later stages, TET2 deficiency led to an accumulation of a progenitor population, which expressed surface markers characteristic of normal CFU-E cells but were functionally different. In contrast to normal CFU-E cells that require only erythropoietin (EPO) for proliferation, these abnormal progenitors required SCF and EPO and exhibited impaired differentiation. We termed this population of progenitors "marker CFU-E" cells. We further show that AXL expression was increased in marker CFU-E cells and that the increased AXL expression led to increased activation of AKT and ERK. Moreover, the altered proliferation and differentiation of marker CFU-E cells were partially rescued by an AXL inhibitor. Our findings document an important role for TET2 in erythropoiesis and have uncovered previously unknown mechanisms by which deficiency of TET2 contributes to ineffective erythropoiesis.


Assuntos
Proteínas de Ligação a DNA/genética , Células Precursoras Eritroides/patologia , Mutação com Perda de Função , Síndromes Mielodisplásicas/genética , Proteínas Proto-Oncogênicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Dioxigenases , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Eritropoese , Deleção de Genes , Técnicas de Silenciamento de Genes , Humanos , Síndromes Mielodisplásicas/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Regulação para Cima
5.
J Hematol Oncol ; 11(1): 19, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29433555

RESUMO

BACKGROUND: SF3B1 is a core component of splicing machinery. Mutations in SF3B1 are frequently found in myelodysplastic syndromes (MDS), particularly in patients with refractory anemia with ringed sideroblasts (RARS), characterized by isolated anemia. SF3B1 mutations have been implicated in the pathophysiology of RARS; however, the physiological function of SF3B1 in erythropoiesis remains unknown. METHODS: shRNA-mediated approach was used to knockdown SF3B1 in human CD34+ cells. The effects of SF3B1 knockdown on human erythroid cell differentiation, cell cycle, and apoptosis were assessed by flow cytometry. RNA-seq, qRT-PCR, and western blot analyses were used to define the mechanisms of phenotypes following knockdown of SF3B1. RESULTS: We document that SF3B1 knockdown in human CD34+ cells leads to increased apoptosis and cell cycle arrest of early-stage erythroid cells and generation of abnormally nucleated late-stage erythroblasts. RNA-seq analysis of SF3B1-knockdown erythroid progenitor CFU-E cells revealed altered splicing of an E3 ligase Makorin Ring Finger Protein 1 (MKRN1) and subsequent activation of p53 pathway. Importantly, ectopic expression of MKRN1 rescued SF3B1-knockdown-induced alterations. Decreased expression of genes involved in mitosis/cytokinesis pathway including polo-like kinase 1 (PLK1) was noted in SF3B1-knockdown polychromatic and orthochromatic erythroblasts comparing to control cells. Pharmacologic inhibition of PLK1 also led to generation of abnormally nucleated erythroblasts. CONCLUSIONS: These findings enabled us to identify novel roles for SF3B1 in human erythropoiesis and provided new insights into its role in regulating normal erythropoiesis. Furthermore, these findings have implications for improved understanding of ineffective erythropoiesis in MDS patients with SF3B1 mutations.


Assuntos
Eritropoese , Síndromes Mielodisplásicas/genética , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Linhagem Celular , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Síndromes Mielodisplásicas/metabolismo
6.
Am J Hematol ; 93(4): 494-503, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29274096

RESUMO

Studies of human erythropoiesis have relied, for the most part, on the in vitro differentiation of hematopoietic stem and progenitor cells (HSPC) from different sources. Here, we report that despite the common core erythroid program that exists between cord blood (CB)- and peripheral blood (PB)-HSPC induced toward erythroid differentiation in vitro, significant functional differences exist. We undertook a comparative analysis of human erythropoiesis using these two different sources of HSPC. Upon in vitro erythroid differentiation, CB-derived cells proliferated 4-fold more than PB-derived cells. However, CB-derived cells exhibited a delayed kinetics of differentiation, resulting in an increased number of progenitors, notably colony-forming unit (CFU-E). The phenotypes of early erythroid differentiation stages also differed between the two sources with a significantly higher percentage of IL3R- GPA- CD34+ CD36+ cells generated from PB- than CB-HSPCs. This subset was found to generate both burst-forming unit (BFU-E) and CFU-E colonies in colony-forming assays. To further understand the differences between CB- and PB-HSPC, cells at eight stages of erythroid differentiation were sorted from each of the two sources and their transcriptional profiles were compared. We document differences at the CD34, BFU-E, poly- and orthochromatic stages. Genes exhibiting the most significant differences in expression between HSPC sources clustered into cell cycle- and autophagy-related pathways. Altogether, our studies provide a qualitative and quantitative comparative analysis of human erythropoiesis, highlighting the impact of the developmental origin of HSPCs on erythroid differentiation.


Assuntos
Envelhecimento/sangue , Células Precursoras Eritroides/citologia , Eritropoese/fisiologia , Adulto , Antígenos CD34/análise , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Células Precursoras Eritroides/efeitos dos fármacos , Eritropoese/genética , Eritropoetina/farmacologia , Sangue Fetal/citologia , Humanos , Recém-Nascido , Transcriptoma
7.
Blood ; 129(14): 2002-2012, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28167661

RESUMO

The ten-eleven translocation (TET) family of proteins plays important roles in a wide range of biological processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxy-methylcytosine. However, their function in erythropoiesis has remained unclear. We show here that TET2 and TET3 but not TET1 are expressed in human erythroid cells, and we explore the role of these proteins in erythropoiesis. Knockdown experiments revealed that TET2 and TET3 have different functions. Suppression of TET3 expression in human CD34+ cells markedly impaired terminal erythroid differentiation, as reflected by increased apoptosis, the generation of bi/multinucleated polychromatic/orthochromatic erythroblasts, and impaired enucleation, although without effect on erythroid progenitors. In marked contrast, TET2 knockdown led to hyper-proliferation and impaired differentiation of erythroid progenitors. Surprisingly, knockdown of neither TET2 nor TET3 affected global levels of 5mC. Thus, our findings have identified distinct roles for TET2 and TET3 in human erythropoiesis, and provide new insights into their role in regulating human erythroid differentiation at distinct stages of development. Moreover, because knockdown of TET2 recapitulates certain features of erythroid development defects characteristic of myelodysplastic syndromes (MDSs), and the TET2 gene mutation is one of the most common mutations in MDS, our findings may be relevant for improved understanding of dyserythropoiesis of MDS.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Eritropoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Antígenos CD34/genética , Antígenos CD34/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Técnicas de Silenciamento de Genes , Células-Tronco Hematopoéticas/citologia , Humanos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Proteínas Proto-Oncogênicas/genética
8.
Biochemistry ; 55(25): 3504-3513, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27267274

RESUMO

An asymmetric distribution of phospholipids in the membrane bilayer is inseparable from physiological functions, including shape preservation and survival of erythrocytes, and by implication other cells. Aminophospholipids, notably phosphatidylserine (PS), are confined to the inner leaflet of the erythrocyte membrane lipid bilayer by the ATP-dependent flippase enzyme, ATP11C, counteracting the activity of an ATP-independent scramblase. Phospholipid scramblase 1 (PLSCR1), a single-transmembrane protein, was previously reported to possess scrambling activity in erythrocytes. However, its function was cast in doubt by the retention of scramblase activity in erythrocytes of knockout mice lacking this protein. We show that in the human erythrocyte PLSCR1 is the predominant scramblase and by reconstitution into liposomes that its activity resides in the transmembrane domain. At or below physiological intracellular calcium concentrations, total suppression of flippase activity nevertheless leaves the membrane asymmetry undisturbed. When liposomes or erythrocytes are depleted of cholesterol (a reversible process in the case of erythrocytes), PS quickly appears at the outer surface, implying that cholesterol acts in the cell as a powerful scramblase inhibitor. Thus, our results bring to light a previously unsuspected function of cholesterol in regulating phospholipid scrambling.


Assuntos
Adenosina Trifosfatases/metabolismo , Colesterol/metabolismo , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Transporte Biológico , Cálcio/metabolismo , Células Cultivadas , Eritrócitos/citologia , Humanos , Camundongos , Fosfatidilserinas/metabolismo
9.
Haematologica ; 101(5): 559-65, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944472

RESUMO

Phosphatidylserine is localized exclusively to the inner leaflet of the membrane lipid bilayer of most cells, including erythrocytes. This asymmetric distribution is critical for the survival of erythrocytes in circulation since externalized phosphatidylserine is a phagocytic signal for splenic macrophages. Flippases are P-IV ATPase family proteins that actively transport phosphatidylserine from the outer to inner leaflet. It has not yet been determined which of the 14 members of this family of proteins is the flippase in human erythrocytes. Herein, we report that ATP11C encodes a major flippase in human erythrocytes, and a genetic mutation identified in a male patient caused congenital hemolytic anemia inherited as an X-linked recessive trait. Phosphatidylserine internalization in erythrocytes with the mutant ATP11C was decreased 10-fold compared to that of the control, functionally establishing that ATP11C is a major flippase in human erythrocytes. Contrary to our expectations phosphatidylserine was retained in the inner leaflet of the majority of mature erythrocytes from both controls and the patient, suggesting that phosphatidylserine cannot be externalized as long as scramblase is inactive. Phosphatidylserine-exposing cells were found only in the densest senescent cells (0.1% of total) in which scramblase was activated by increased Ca(2+) concentration: the percentage of these phosphatidylserine-exposing cells was increased in the patient's senescent cells accounting for his mild anemia. Furthermore, the finding of similar extents of phosphatidylserine exposure by exogenous Ca(2+)-activated scrambling in both control erythrocytes and the patient's erythrocytes implies that suppressed scramblase activity rather than flippase activity contributes to the maintenance of phosphatidylserine in the inner leaflet of human erythrocytes.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Anemia Hemolítica Congênita/genética , Anemia Hemolítica Congênita/metabolismo , Eritrócitos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/deficiência , Adolescente , Anemia Hemolítica Congênita/diagnóstico , Transporte Biológico Ativo , Biomarcadores , Cálcio/metabolismo , Índices de Eritrócitos , Eritrócitos/efeitos dos fármacos , Humanos , Masculino , Proteínas de Membrana Transportadoras/deficiência , Mutação , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacologia
10.
Blood ; 127(11): 1481-92, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26679864

RESUMO

Current therapeutic strategies for sickle cell anemia are aimed at reactivating fetal hemoglobin. Pomalidomide, a third-generation immunomodulatory drug, was proposed to induce fetal hemoglobin production by an unknown mechanism. Here, we report that pomalidomide induced a fetal-like erythroid differentiation program, leading to a reversion of γ-globin silencing in adult human erythroblasts. Pomalidomide acted early by transiently delaying erythropoiesis at the burst-forming unit-erythroid/colony-forming unit-erythroid transition, but without affecting terminal differentiation. Further, the transcription networks involved in γ-globin repression were selectively and differentially affected by pomalidomide including BCL11A, SOX6, IKZF1, KLF1, and LSD1. IKAROS (IKZF1), a known target of pomalidomide, was degraded by the proteasome, but was not the key effector of this program, because genetic ablation of IKZF1 did not phenocopy pomalidomide treatment. Notably, the pomalidomide-induced reprogramming was conserved in hematopoietic progenitors from individuals with sickle cell anemia. Moreover, multiple myeloma patients treated with pomalidomide demonstrated increased in vivo γ-globin levels in their erythrocytes. Together, these data reveal the molecular mechanisms by which pomalidomide reactivates fetal hemoglobin, reinforcing its potential as a treatment for patients with ß-hemoglobinopathies.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Talidomida/análogos & derivados , Transcrição Gênica/efeitos dos fármacos , gama-Globinas/genética , Adulto , Anemia Falciforme/sangue , Anemia Falciforme/genética , Proteínas de Transporte/sangue , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Eritropoese/efeitos dos fármacos , Hemoglobina Fetal/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Histona Desmetilases/sangue , Humanos , Fator de Transcrição Ikaros/sangue , Fator de Transcrição Ikaros/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/sangue , Lentivirus/genética , Mieloma Múltiplo/sangue , Mieloma Múltiplo/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas Nucleares/sangue , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Repressoras , Fatores de Transcrição SOXD/sangue , Talidomida/farmacologia , Globinas beta/biossíntese , Globinas beta/genética , gama-Globinas/biossíntese
11.
Blood ; 124(24): 3636-45, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25339359

RESUMO

Burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) cells are erythroid progenitors traditionally defined by colony assays. We developed a flow cytometry-based strategy for isolating human BFU-E and CFU-E cells based on the changes in expression of cell surface markers during in vitro erythroid cell culture. BFU-E and CFU-E are characterized by CD45(+)GPA(-)IL-3R(-)CD34(+)CD36(-)CD71(low) and CD45(+)GPA(-)IL-3R(-)CD34(-)CD36(+)CD71(high) phenotypes, respectively. Colony assays validated phenotypic assignment giving rise to BFU-E and CFU-E colonies, both at a purity of ∼90%. The BFU-E colony forming ability of CD45(+)GPA(-)IL-3R(-)CD34(+)CD36(-)CD71(low) cells required stem cell factor and erythropoietin, while the CFU-E colony forming ability of CD45(+)GPA(-)IL-3R(-)CD34(-)CD36(+)CD71(high) cells required only erythropoietin. Bioinformatic analysis of the RNA-sequencing data revealed unique transcriptomes at each differentiation stage. The sorting strategy was validated in uncultured primary cells isolated from bone marrow, cord blood, and peripheral blood, indicating that marker expression is not an artifact of in vitro cell culture, but represents an in vivo characteristic of erythroid progenitor populations. The ability to isolate highly pure human BFU-E and CFU-E progenitors will enable detailed cellular and molecular characterization of these distinct progenitor populations and define their contribution to disordered erythropoiesis in inherited and acquired hematologic disease. Our data provides an important resource for future studies of human erythropoiesis.


Assuntos
Antígenos de Diferenciação/biossíntese , Células Precursoras Eritroides/metabolismo , Eritropoese/fisiologia , Eritropoetina/metabolismo , Regulação da Expressão Gênica/fisiologia , Transcriptoma/fisiologia , Separação Celular/métodos , Células Precursoras Eritroides/citologia , Feminino , Humanos , Masculino
12.
J Biol Chem ; 289(9): 5925-37, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24381168

RESUMO

Protein 4.1B is a member of protein 4.1 family, adaptor proteins at the interface of membranes and the cytoskeleton. It is expressed in most mammalian tissues and is known to be required in formation of nervous and cardiac systems; it is also a tumor suppressor with a role in metastasis. Here, we explore functions of 4.1B using primary mouse embryonic fibroblasts (MEF) derived from wild type and 4.1B knock-out mice. MEF cells express two 4.1B isoforms: 130 and 60-kDa. 130-kDa 4.1B was absent from 4.1B knock-out MEF cells, but 60-kDa 4.1B remained, suggesting incomplete knock-out. Although the 130-kDa isoform was predominantly located at the plasma membrane, the 60-kDa isoform was enriched in nuclei. 130-kDa-deficient 4.1B MEF cells exhibited impaired cell adhesion, spreading, and migration; they also failed to form actin stress fibers. Impaired cell spreading and stress fiber formation were rescued by re-expression of the 130-kDa 4.1B but not the 60-kDa 4.1B. Our findings document novel, isoform-selective roles for 130-kDa 4.1B in adhesion, spreading, and migration of MEF cells by affecting actin organization, giving new insight into 4.1B functions in normal tissues as well as its role in cancer.


Assuntos
Citoesqueleto de Actina/metabolismo , Movimento Celular/fisiologia , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/genética , Animais , Adesão Celular/fisiologia , Membrana Celular/genética , Membrana Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Neoplasias/genética , Neoplasias/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
13.
Methods Enzymol ; 514: 129-46, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22975051

RESUMO

The hormone ghrelin is a unique signaling peptide with powerful metabolic effects, mediated by its acylated forms. The acyl modification of ghrelin is unique in that it takes place via a susceptible ester linkage in the conserved serine-3 of ghrelin and is composed principally of octanoyl and, to lesser extent, decanoyl fatty acids. The nature of this ester linkage makes it susceptible to esterases, which convert it to its des-acyl forms, and, if not adequately inhibited, the conversion to des-acyl ghrelin, particularly post sample collection, can lead to artifactual and misleading results. Here, we describe sample processing and mass spectrometric methodologies for the accurate and simultaneous quantification of acylated and des-acylated forms of ghrelin. We exploited these methodologies (1) to characterize circulating and tissue-specific forms of acyl and des-acyl ghrelin, (2) to optimize a cell system for acyl ghrelin production and search for the enzyme responsible for ghrelin's acylation, and (3) to demonstrate that GOAT is ghrelin's O-acyl transferase.


Assuntos
Aciltransferases/metabolismo , Técnicas de Cultura de Células/métodos , Grelina/sangue , Acilação , Aciltransferases/genética , Animais , Caprilatos/metabolismo , Linhagem Celular Tumoral , Meios de Cultura/metabolismo , Mucosa Gástrica/metabolismo , Inativação Gênica , Grelina/genética , Grelina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Estabilidade Proteica , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Estômago/citologia , Transfecção
14.
J Med Syst ; 36(6): 3491-505, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22048780

RESUMO

Radio frequency identification (RFID) is a form of wireless communication that is used to identify assets and people. RFID has significant benefits to the medical environment. However, serious security threats are present in RFID systems that must be addressed in a medical environment. Of particular interest are threats to patient privacy and safety based on interception of messages, interruption of communication, modification of data, and fabrication of messages and devices. This paper presents an overview of these security threats present in RFID systems in a medical environment and provides guidance on potential solutions to these threats. This paper provides a roadmap for researchers and implementers to address the security issues facing RFID in the medical space.


Assuntos
Segurança Computacional , Confidencialidade , Instalações de Saúde , Dispositivo de Identificação por Radiofrequência , Informática Médica , Segurança do Paciente , Medição de Risco
15.
J Neurosci ; 29(11): 3603-12, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19295164

RESUMO

Recent studies suggest that bone marrow-derived macrophages can effectively reduce beta-amyloid (Abeta) deposition in brain. To further elucidate the mechanisms by which macrophages degrade Abeta, we cultured murine macrophages on top of Abeta plaque-bearing brain sections from transgenic mice expressing PDAPP [human amyloid precursor protein (APP) with the APP(717V>F) mutation driven by the platelet-derived growth factor promoter]. Using this ex vivo assay, we found that macrophages from wild-type mice very efficiently degrade both soluble and insoluble Abeta in a time-dependent manner and markedly eliminate thioflavine-S positive amyloid deposits. Because macrophages express and secrete apolipoprotein E (apoE), we compared the efficiency of Abeta degradation by macrophages prepared from apoE-deficient mice or mice expressing human apoE2, apoE3, or apoE4. Macrophages expressing apoE2 were more efficient at degrading Abeta than apoE3-expressing, apoE4-expressing, or apoE-deficient macrophages. Moreover, macrophage-induced degradation of Abeta was effectively blocked by an anti-apoE antibody and receptor-associated protein, an antagonist of the low-density lipoprotein (LDL) receptor family, suggesting involvement of LDL receptors. Measurement of matrix metalloproteinase-9 (MMP-9) activity in the media from human apoE-expressing macrophages cocultured with Abeta-containing brain sections revealed greater levels of MMP-9 activity in apoE2-expressing than in either apoE3- or apoE4-expressing macrophages. Differences in MMP-9 activity appear to contribute to the isoform-specific differences in Abeta degradation by macrophages. These apoE isoform-dependent effects of macrophages on Abeta degradation suggest a novel "peripheral" mechanism for Abeta clearance from brain that may also, in part, explain the isoform-dependent effects of apoE in determining the genetic risk for Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Apolipoproteínas E/fisiologia , Macrófagos/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/biossíntese , Precursor de Proteína beta-Amiloide/genética , Animais , Apolipoproteínas E/genética , Células Cultivadas , Técnicas de Cocultura/métodos , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia
16.
J Proteome Res ; 7(8): 3490-7, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18590316

RESUMO

Chemical proteomics is an emerging technique for drug target deconvolution and profiling the toxicity of known drugs. With the use of this technique, the specificity of a small molecule inhibitor toward its potential targets can be characterized and information thus obtained can be used in optimizing lead compounds. Most commonly, small molecules are immobilized on solid supports and used as affinity chromatography resins to bind targets. However, it is difficult to evaluate the effect of immobilization on the affinity of the compounds to their targets. Here, we describe the development and application of a soluble probe where a small molecule was coupled with a peptide epitope which was used to affinity isolate binding proteins from cell lysate. The soluble probe allowed direct verification that the compound after coupling with peptide epitope retained its binding characteristics. The PKC-alpha inhibitor Bisindolylmaleimide-III was coupled with a peptide containing the FLAG epitope. Following incubation with cellular lysates, the compound and associated proteins were affinity isolated using anti-FLAG antibody beads. Using this approach, we identified the known Bisindolylmaleimide-III targets, PKC-alpha, GSK3-beta, CaMKII, adenosine kinase, CDK2, and quinine reductase type 2, as well as previously unidentified targets PKAC-alpha, prohibitin, VDAC and heme binding proteins. This method was directly compared to the solid-phase method (small molecule was immobilized to a solid support) providing an orthogonal strategy to aid in target deconvolution and help to eliminate false positives originating from nonspecific binding of the proteins to the matrix.


Assuntos
Indóis/química , Maleimidas/química , Peptídeos/química , Proteínas/metabolismo , Sequência de Aminoácidos , Anticorpos , Cromatografia de Afinidade , Reagentes de Ligações Cruzadas/química , Sistemas de Liberação de Medicamentos , Epitopos , Resinas Epóxi , Células HeLa , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Oligopeptídeos , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica , Proteína Quinase C-alfa/antagonistas & inibidores , Proteômica
17.
Proc Natl Acad Sci U S A ; 105(17): 6320-5, 2008 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-18443287

RESUMO

The peptide hormone ghrelin is the only known protein modified with an O-linked octanoyl side group, which occurs on its third serine residue. This modification is crucial for ghrelin's physiological effects including regulation of feeding, adiposity, and insulin secretion. Despite the crucial role for octanoylation in the physiology of ghrelin, the lipid transferase that mediates this novel modification has remained unknown. Here we report the identification and characterization of human GOAT, the ghrelin O-acyl transferase. GOAT is a conserved orphan membrane-bound O-acyl transferase (MBOAT) that specifically octanoylates serine-3 of the ghrelin peptide. Transcripts for both GOAT and ghrelin occur predominantly in stomach and pancreas. GOAT is conserved across vertebrates, and genetic disruption of the GOAT gene in mice leads to complete absence of acylated ghrelin in circulation. The occurrence of ghrelin and GOAT in stomach and pancreas tissues demonstrates the relevance of GOAT in the acylation of ghrelin and further implicates acylated ghrelin in pancreatic function.


Assuntos
Aciltransferases/metabolismo , Grelina/metabolismo , Acilação , Aciltransferases/genética , Animais , Caprilatos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/enzimologia , Sequência Conservada , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Grelina/sangue , Grelina/genética , Humanos , Dados de Sequência Molecular , Pâncreas/enzimologia , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina/metabolismo , Estômago/enzimologia
18.
J Phys Chem B ; 111(26): 7691-9, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17559260

RESUMO

The intrinsic variation in the near-edge X-ray absorption fine structure (NEXAFS) spectra of peptides and proteins provide an opportunity to identify and map them in various biological environments, without additional labeling. In principle, with sufficiently accurate spectra, peptides (<50 amino acids) or proteins with unusual sequences (e.g., cysteine- or methionine-rich) should be differentiable from other proteins, since the NEXAFS spectrum of each amino acid is distinct. To evaluate the potential for this approach, we have developed X-SpecSim, a tool for quantitatively predicting the C, N, and O 1s NEXAFS spectra of peptides and proteins from their sequences. Here we present the methodology for predicting such spectra, along with tests of its precision using comparisons to the spectra of various proteins and peptides. The C 1s, N 1s, and O 1s spectra of two novel antimicrobial peptides, Indolicidin (ILPWKWPWWPWRR-NH2) and Sub6 (RWWKIWVIRWWR-NH2), as well as human serum albumin and fibrinogen are reported and interpreted. The ability to identify, differentiate, and quantitatively map an antimicrobial peptide against a background of protein is demonstrated by a scanning transmission X-ray microscopy study of a mixture of albumin and sub6.


Assuntos
Oligopeptídeos/química , Mapeamento de Peptídeos , Proteínas/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Bovinos , Humanos , Proteínas/ultraestrutura , Albumina Sérica/química , Espectrofotometria , Raios X
19.
J Proteome Res ; 6(5): 1758-67, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17397207

RESUMO

We present a wrapper-based approach to estimate and control the false discovery rate for peptide identifications using the outputs from multiple commercially available MS/MS search engines. Features of the approach include the flexibility to combine output from multiple search engines with sequence and spectral derived features in a flexible classification model to produce a score associated with correct peptide identifications. This classification model score from a reversed database search is taken as the null distribution for estimating p-values and false discovery rates using a simple and established statistical procedure. Results from 10 analyses of rat sera on an LTQ-FT mass spectrometer indicate that the method is well calibrated for controlling the proportion of false positives in a set of reported peptide identifications while correctly identifying more peptides than rule-based methods using one search engine alone.


Assuntos
Espectrometria de Massas/métodos , Peptídeos , Proteômica , Adulto , Sequência de Aminoácidos , Animais , Calibragem , Reações Falso-Positivas , Humanos , Masculino , Espectrometria de Massas/instrumentação , Pessoa de Meia-Idade , Peptídeos/química , Peptídeos/classificação , Peptídeos/genética , Peptídeos/metabolismo , Polimorfismo Genético , Curva ROC , Ratos
20.
Biotechniques ; Suppl: 13-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16528911

RESUMO

A method is described for the quantitative determination of peptides using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Known limitations imposed by crystal heterogeneity, peptide ionization differences, data handling, and protein quantification with MALDI-TOF mass spectrometry are addressed in this method with a "seed crystal" protocol for analyte-matrix formation, the use of internal protein standards, and a software package called maldi_quant. The seed crystal protocol, a new variation of the fast-evaporation method, minimizes crystal heterogeneity and allows for consistent collection of protein spectra. The software maldi_quant permits rapid and automated analysis of peak intensity data, normalization of peak intensities to internal standards, and peak intensity deconvolution and estimation for vicinal peaks. Using insulin proteins in a background of other unrelated peptides, this method shows an overall coefficient of variance of 4.4%, and a quantitative working range of 0.58-37.5 ng bovine insulin per spot. Coupling of this methodology to powerful analytical procedures such as immunoprecipitation is likely to lead to the rapid and reliable quantification of biologically relevant proteins and their closely related variants.


Assuntos
Peptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Bovinos , Insulina/análise , Padrões de Referência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA