Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurotherapeutics ; 19(5): 1662-1685, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35861925

RESUMO

Depressed individuals who carry the short allele for the serotonin-transporter-linked promotor region of the gene are more vulnerable to stress and have reduced response to first-line antidepressants such as selective serotonin reuptake inhibitors. Since depression severity has been reported to correlate with brain iron levels, the present study aimed to characterise the potential antidepressant properties of the iron chelator deferiprone. Using the serotonin transporter knock-out (5-HTT KO) mouse model, we assessed the behavioural effects of acute deferiprone on the Porsolt swim test (PST) and novelty-suppressed feeding test (NSFT). Brain and blood iron levels were also measured following acute deferiprone. To determine the relevant brain regions activated by deferiprone, we then measured c-Fos expression and applied network-based analyses. We found that deferiprone reduced immobility time in the PST in 5-HTT KO mice and reduced latency to feed in the NSFT in both genotypes, suggesting potential antidepressant-like effects. There was no effect on brain or blood iron levels following deferiprone treatment, potentially indicating an acute iron-independent mechanism. Deferiprone reversed the increase in c-Fos expression induced by swim stress in 5-HTT KO mice in the lateral amygdala. Functional network analyses suggest that hub regions of activity in mice treated with deferiprone include the caudate putamen and prefrontal cortex. The PST-induced increase in network modularity in wild-type mice was not observed in 5-HTT KO mice. Altogether, our data show that the antidepressant-like effects of deferiprone could be acting via an iron-independent mechanism and that these therapeutic effects are underpinned by changes in neuronal activity in the lateral amygdala.


Assuntos
Ferro , Inibidores Seletivos de Recaptação de Serotonina , Animais , Camundongos , Deferiprona , Ferro/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Serotonina/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Modelos Animais de Doenças , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico
2.
Compr Psychoneuroendocrinol ; 10: 100131, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35755205

RESUMO

Jockeys work in high-risk environments that rely heavily on attention- and decision-making to perform well and safely. Workplace stress literature has often overlooked the impact of stress on cognition, and designs that include physiological measures are rare. This study assessed the prospective concurrent relationships between workplace stress, depression symptoms and low-grade inflammation with cognitive performance among professional jockeys. Professional jockeys (N = 35, Mage = 32.29) provided information on workplace stress and depression symptoms, with serum levels of inflammatory cytokines (IL-6, IL-10, TNFα) and cytokine balance (IL-6: IL-10, TNFα: IL-10) quantified with SIMOA, and cognitive performance with CogSport computer-based testing battery. These measures were repeated after a twelve-month interval. Increased workplace stress between testing intervals was associated to an increased cytokine imbalance (ß = 0.447, p = .015) after controlling for age and gender. Increases in cytokine imbalance occurred in unison with decreases in attention (ß = 0.516, p = .002), decision-making (ß = 0.452, p = .009) and working memory (ß = 0.492, p = .004). These preliminary findings suggest the underlying mechanisms linking workplace stress and reduced cognitive performance may be influenced by measures of low-grade inflammation and specifically a cytokine imbalance. Our findings suggest a measure of cytokine balance may explain the heterogenous findings in previous studies that have focussed solely on the association of workplace stress with pro-inflammatory cytokines. Future work is needed however, to provide a broader evidence-base for our claims to better inform designs to intervene in the higher workplace stress-poorer cognition relationship.

3.
Sleep ; 45(5)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35554581

RESUMO

STUDY OBJECTIVES: Sleep is a prominent behavioral and biochemical state observed in all animals studied, including platyhelminth flatworms. Investigations into the biochemical mechanisms associated with sleep-and wakefulness-are important for understanding how these states are regulated and how that regulation changed with the evolution of new types of animals. Unfortunately, beyond a handful of vertebrates, such studies on invertebrates are rare. METHODS: We investigated the effect of seven neurotransmitters, and one pharmacological compound, that modulate either sleep or wakefulness in mammals, on flatworms (Girardia tigrina). Flatworms were exposed via ingestion and diffusion to four neurotransmitters that promote wakefulness in vertebrates (acetylcholine, dopamine, glutamate, histamine), and three that induce sleep (adenosine, GABA, serotonin) along with the H1 histamine receptor antagonist pyrilamine. Compounds were administered over concentrations spanning three to five orders of magnitude. Flatworms were then transferred to fresh water and video recorded for analysis. RESULTS: Dopamine and histamine decreased the time spent inactive and increased distance traveled, consistent with their wake-promoting effect in vertebrates and fruit flies; pyrilamine increased restfulness and GABA showed a nonsignificant trend towards promoting restfulness in a dose-dependent manner, in agreement with their sleep-inducing effect in vertebrates, fruit flies, and Hydra. Similar to Hydra, acetylcholine, glutamate, and serotonin, but also adenosine, had no apparent effect on flatworm behavior. CONCLUSIONS: These data demonstrate the potential of neurotransmitters to regulate sleep and wakefulness in flatworms and highlight the conserved action of some neurotransmitters across species.


Assuntos
Platelmintos , Vigília , Acetilcolina , Adenosina , Animais , Dopamina , Ácido Glutâmico , Histamina , Mamíferos , Neurotransmissores/fisiologia , Pirilamina/farmacologia , Serotonina , Sono/fisiologia , Vigília/fisiologia , Ácido gama-Aminobutírico
4.
Neuroscience ; 455: 30-38, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33346119

RESUMO

The proto-oncogene pleomorphic adenoma gene 1 (Plag1) encodes a zinc finger transcription factor. PLAG1 is part of the high motility group AT hook-2 (HGMA2)-PLAG1-insulin-like growth factor 2 (IGF2) pathway that, when disrupted, leads to Silver-Russell syndrome, a severe form of intrauterine growth restriction. With little known about PLAG1's role in normal physiology, this study is the first to characterise the behavioural phenotype of PLAG1-deficient mice. Mice were tested for differences in circadian locomotor activity and body temperature, sleep-like behaviour, anxiety-like behaviour, cognition, social behaviour, and sensorimotor gating. Overall, the behavioural phenotype of the Plag1 knock-out (KO) mice was mild: no significant differences were seen in circadian activity levels, locomotion, object recognition, spatial memory or sociability compared to wild-type mice. However, the cued test of fear conditioning, prepulse inhibition of the startle response and Preyer's reflex test suggest that Plag1 KO mice may have a hearing impairment. This implies that PLAG1 plays an important role in proper functioning and/or development of the neural circuitry behind the auditory processes or interacts with genes involved in those processes.


Assuntos
Adenoma Pleomorfo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Fatores de Transcrição
5.
J Neurotrauma ; 36(14): 2260-2271, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30843474

RESUMO

Rodent models can provide insights into the most pertinent issues surrounding concussion. Nonetheless, the relevance of some existing models to clinical concussion can be questioned, particularly with regard to the use of surgery and anesthesia and the mechanism and severity of injury. Accordingly, we have co-developed an awake closed-head injury (ACHI) model in rats. Here, we aimed to create a temporal profile of the neurobehavioral and neuropathological effects of a single ACHI. Adolescent male rats were placed in a restraint bag and a steel helmet was positioned over the head such that the impact target was centered over the left parietal cortex. Once positioned on a foam platform, a cortical impactor was used to strike the helmet. Sham animals underwent the same procedure without impact. When compared with sham rats, those given a single ACHI displayed evidence of sensorimotor deficits and reduced exploratory behavior within the first 20 min post-injury; however, these effects were resolved after 24 h. A single ACHI impaired spatial memory on the Y-maze task at both 5 min and 24 h post-ACHI; however, no deficits were apparent at 48 h. Immunostaining revealed region-specific increases in ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein expression at 3 days post-impact, with no differences found at either 1 or 14 days. Taken together, our findings indicate that a single ACHI results in transient neurobehavioral and glial disturbances and as such, this model may be a valuable tool for pre-clinical concussion research.


Assuntos
Concussão Encefálica/fisiopatologia , Modelos Animais de Doenças , Neuroglia , Animais , Estado de Consciência , Comportamento Exploratório , Traumatismos Cranianos Fechados/fisiopatologia , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Long-Evans
6.
Neuroscience ; 390: 88-103, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30125684

RESUMO

Anxiety-related defensive behavior is controlled by a distributed network of brain regions and interconnected neural circuits. The dorsal raphe nucleus (DR), which contains the majority of forebrain-projecting serotonergic neurons, is a key brain region involved in fear states and anxiety-related behavior via modulation of this broad neural network. Evidence suggests that relaxin-3 neurons in the nucleus incertus (NI) may also interact with this network, however, the potential role of the NI in the control of anxiety-related defensive behavior requires further investigation. In this study, we examined the response of an anxiety-related neuronal network, including serotonergic neurons in the DR and relaxin-3-containing neurons in the NI, to administration of an anxiogenic drug and exposure to an aversive environment. We administered an anxiogenic dose of the adenosine receptor antagonist, caffeine (50 mg/kg, i.p.), or vehicle, to adult male Wistar rats and 30 min later exposed them to either an elevated plus-maze (EPM) or a home cage environment. Administration of caffeine and exposure to the EPM activated a broad network of brain regions involved in control of anxiety-like behaviors, including serotonergic neurons in the DR, as measured using c-Fos immunohistochemistry. However, only exposure to the EPM activated relaxin-3-containing neurons in the NI, and activation of these neurons was not correlated with changes in anxiety-like behavior. These data suggest activation of the NI relaxin-3 system is associated with expression of behavior in tests of anxiety, but may not be directly involved in the approach-avoidance conflict inherent in anxiety-related defensive behavior in rodents.


Assuntos
Ansiedade/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleos da Rafe/metabolismo , Relaxina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Animais , Ansiedade/induzido quimicamente , Cafeína/administração & dosagem , Masculino , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Ratos Wistar
7.
J Psychopharmacol ; 32(8): 911-921, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29926762

RESUMO

INTRODUCTION: This study aimed to investigate the effects of the galanin-3 receptor antagonist, SNAP 37889, on c-Fos protein expression after cue-induced reinstatement of alcohol-seeking in the brains of alcohol-preferring rats. METHODS: Eighteen alcohol-preferring rats were trained to self-administer 10% v/v ethanol in the presence of response-contingent cues, which was followed by extinction. Rats were then treated with SNAP 37889 (30 mg/kg, i.p.) or vehicle, before being tested for cue-induced reinstatement. Administration of SNAP 37889 reduced cue-induced reinstatement of ethanol-seeking behaviour. To examine the effect of SNAP 37889 and cue-induced reinstatement on neuronal activation, c-Fos expression was measured in subregions of the medial prefrontal cortex and nucleus accumbens. RESULTS: SNAP 37889 administration increased c-Fos immunoreactivity in the nucleus accumbens shell, but was without effect in the nucleus accumbens core and the medial prefrontal cortex. Dual-label Fos/tyrosine hydroxylase immunohistochemistry was used to examine the effects of SNAP 37889 on dopamine neurons in the ventral tegmental area; however, no differences between SNAP 37889 and vehicle-treated rats were found. CONCLUSIONS: These data support previous findings of galanin-3 receptor involvement in cue-induced reinstatement of alcohol-seeking behaviour, and provide novel evidence that the ability of galanin-3 receptor antagonism to attenuate cue-induced reinstatement relates to activation of the nucleus accumbens shell.


Assuntos
Alcoolismo/dietoterapia , Comportamento de Procura de Droga/efeitos dos fármacos , Indóis/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor Tipo 3 de Galanina/antagonistas & inibidores , Alcoolismo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Sinais (Psicologia) , Etanol , Extinção Psicológica/efeitos dos fármacos , Masculino , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Autoadministração/métodos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
8.
Stress ; 18(1): 76-87, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25556980

RESUMO

Previous studies suggest that multiple corticolimbic and hypothalamic structures are involved in glucocorticoid-mediated feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis, including the dorsomedial hypothalamus (DMH), but a potential role of the DMH has not been directly tested. To investigate the role of the DMH in glucocorticoid-mediated negative feedback, adult male Sprague Dawley rats were implanted with jugular cannulae and bilateral guide cannulae directed at the DMH, and finally were either adrenalectomized (ADX) or were subjected to sham-ADX. ADX rats received corticosterone (CORT) replacement in the drinking water (25 µg/mL), which, based on initial studies, restored a rhythm of plasma CORT concentrations in ADX rats that was similar in period and amplitude to the diurnal rhythm of plasma CORT concentrations in sham-ADX rats, but with a significant phase delay. Following recovery from surgery, rats received microinjections of either CORT (10 ng, 0.5 µL, 0.25 µL/min, per side) or vehicle (aCSF containing 0.2% EtOH), bilaterally, directly into the DMH, prior to a 40-min period of restraint stress. In sham-ADX rats, bilateral intra-DMH microinjections of CORT, relative to bilateral intra-DMH microinjections of vehicle, decreased restraint stress-induced elevation of endogenous plasma CORT concentrations 60 min after the onset of intra-DMH injections. Intra-DMH CORT decreased the overall area under the curve for plasma CORT concentrations during the intermediate time frame of glucocorticoid negative feedback, from 0.5 to 2 h following injection. These data are consistent with the hypothesis that the DMH is involved in feedback inhibition of HPA axis activity at the intermediate time frame.


Assuntos
Corticosterona/administração & dosagem , Núcleo Hipotalâmico Dorsomedial/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Terapia de Reposição Hormonal , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Adrenalectomia , Animais , Ritmo Circadiano/efeitos dos fármacos , Modelos Animais de Doenças , Núcleo Hipotalâmico Dorsomedial/metabolismo , Núcleo Hipotalâmico Dorsomedial/fisiopatologia , Retroalimentação Fisiológica , Hidrocortisona/sangue , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Ratos Sprague-Dawley , Restrição Física/psicologia , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/sangue , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Fatores de Tempo
9.
Physiol Behav ; 107(5): 719-25, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22583860

RESUMO

Previous studies have found that adolescent social isolation of rats can lead to an increased anxiety state during adulthood, while chronic anxiety states are associated with dysregulated local GABAergic inhibition within the basolateral amygdala (BL). Therefore, we investigated the effects of post-weaning social isolation of female rats, in combination with a challenge with the anxiogenic drug, N-methyl-beta-carboline-3-carboxamide (FG-7142), on a subset of GABAergic interneurons in the BL in adulthood using dual immunohistochemical staining for c-Fos and parvalbumin. Juvenile female rats were reared in isolation or in groups of three for a 3-week period from weaning to mid-adolescence, after which all rats were group-housed for an additional 2 weeks. Group-reared rats and isolation-reared rats injected with FG-7142 had increased c-Fos expression in GABAergic interneurons in the anterior part of the BL compared to group-reared rats and isolation-reared rats, respectively, injected with vehicle. Isolation rearing had a main effect to decrease c-Fos expression in GABAergic interneurons in the anterior part of the BL compared to group-reared rats. These data suggest that post-weaning social isolation of female rats leads to dysregulation of a parvalbumin-containing subset of local GABAergic interneurons in the anterior part of the BL, which have previously been implicated in the pathophysiology of chronic anxiety states. These cellular changes may lead to an increased vulnerability to stress- and anxiety-related responses in adulthood.


Assuntos
Tonsila do Cerebelo/metabolismo , Neurônios GABAérgicos/metabolismo , Proteínas Proto-Oncogênicas c-fos/fisiologia , Isolamento Social , Tonsila do Cerebelo/química , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Carbolinas/farmacologia , Feminino , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/química , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Proteínas Proto-Oncogênicas c-fos/análise , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Desmame
10.
Brain Res ; 1443: 1-17, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22297173

RESUMO

Our previous studies have shown that post-weaning social isolation of male rats leads to sensitization of serotonergic systems and increases in anxiety-like behavior in adulthood. Although studies in humans suggest that females have an increased sensitivity to stress and risk for the development of neuropsychiatric illnesses, most studies involving laboratory rats have focused on males while females have been insufficiently studied. The objective of this study was to investigate the effects of post-weaning social isolation on subsequent responses of an anxiety-related dorsal raphe nucleus (DR)-basolateral amygdala system to pharmacological challenge with the anxiogenic drug, N-methyl-beta-carboline-3-carboxamide (FG-7142; a partial inverse agonist at the benzodiazepine allosteric site on the γ-aminobutyric acid (GABA)(A) receptor). Juvenile female rats were reared in isolation or in groups of three for a 3-week period from weaning to mid-adolescence, after which all rats were group-reared for an additional 2 weeks. We then used dual immunohistochemical staining for c-Fos and tryptophan hydroxylase in the DR or single immunohistochemical staining for c-Fos in the basolateral amygdala. Isolation-reared rats, but not group-reared rats, injected with FG-7142 had increased c-Fos expression within the basolateral amygdala and in serotonergic neurons in the dorsal, ventrolateral, caudal and interfascicular parts of the DR relative to appropriate vehicle-injected control groups. These data suggest that post-weaning social isolation of female rats sensitizes a DR-basolateral amygdala system to stress-related stimuli, which may lead to an increased sensitivity to stress- and anxiety-related responses in adulthood.


Assuntos
Ansiedade/fisiopatologia , Neurônios Serotoninérgicos/fisiologia , Isolamento Social , Tonsila do Cerebelo/fisiopatologia , Animais , Comportamento Animal , Carbolinas/administração & dosagem , Feminino , Antagonistas GABAérgicos/administração & dosagem , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos
11.
Physiol Behav ; 104(2): 272-82, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21238469

RESUMO

Chronic stress is a vulnerability factor for a number of psychiatric disorders, including anxiety and affective disorders. Social defeat in rats has proven to be a useful paradigm to investigate the neural mechanisms underlying physiologic and behavioral adaptation to acute and chronic stress. Previous studies suggest that serotonergic systems may contribute to the physiologic and behavioral adaptation to chronic stress, including social defeat in rodent models. In order to test the hypothesis that repeated social defeat alters the emotional behavior and the excitability of brainstem serotonergic systems implicated in control of emotional behavior, we exposed adult male rats either to home cage control conditions, acute social defeat, or social defeat followed 24h later by a second social defeat encounter. We then assessed behavioral responses during social defeat as well as the excitability of serotonergic neurons within the dorsal raphe nucleus using immunohistochemical staining of tryptophan hydroxylase, a marker of serotonergic neurons, and the protein product of the immediate-early gene, c-fos. Repeated social defeat resulted in a shift away from proactive emotional coping behaviors, such as rearing (explorative escape behavior), and toward reactive emotional coping behaviors such as freezing. Both acute and repeated defeat led to widespread increases in c-Fos expression in serotonergic neurons in the dorsal raphe nucleus. Changes in behavior following a second exposure to social defeat, relative to acute defeat, were associated with decreased c-Fos expression in serotonergic neurons within the dorsal and ventral parts of the mid-rostrocaudal dorsal raphe nucleus, regions that have been implicated in 1) serotonergic modulation of fear- and anxiety-related behavior and 2) defensive behavior in conspecific aggressive encounters, respectively. These data support the hypothesis that serotonergic systems play a role in physiologic and behavioral responses to both acute and repeated social defeat.


Assuntos
Adaptação Psicológica/fisiologia , Dominação-Subordinação , Neurônios/metabolismo , Núcleos da Rafe/citologia , Serotonina/metabolismo , Análise de Variância , Animais , Comportamento Animal , Contagem de Células , Regulação da Expressão Gênica/fisiologia , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Triptofano Hidroxilase/metabolismo
12.
Prog Neuropsychopharmacol Biol Psychiatry ; 34(7): 1285-93, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20647026

RESUMO

The basolateral amygdala is a nodal structure within a distributed and interconnected network that regulates anxiety states and anxiety-related behavior. Administration of multiple anxiogenic drugs increases cellular responses (i.e., increases c-Fos expression) in a subregion of the basolateral amygdala, but the neurochemical phenotypes of these cells are not known. The basolateral amygdala contains glutamatergic projection neurons and several populations of γ-aminobutyric acid-synthesizing (GABAergic) interneurons, including a population of parvalbumin (PV)-expressing GABAergic interneurons that co-express the excitatory 5-HT(2A) receptor. The role for these PV-expressing GABAergic interneurons in anxiety-states is unclear. In this experiment we examined the effects of multiple anxiogenic drugs including the 5-HT(2C/2A) receptor agonist m-chlorophenyl piperazine (mCPP), the adenosine receptor antagonist caffeine, the α(2)-adrenoreceptor antagonist yohimbine and the partial inverse agonist at the benzodiazepine allosteric site on the GABA(A) receptor, N-methyl-beta-carboline-3-carboxamide (FG-7142), on c-Fos expression in PV-immunoreactive (PV-ir) interneurons in subdivisions of the basolateral amygdala. All drugs with the exception of mCPP increased c-Fos expression in PV-ir neurons in the basolateral amygdaloid nucleus, anterior part (BLA). The numbers of c-Fos-immunoreactive (c-Fos-ir)/PV-ir GABAergic interneurons in the BLA were positively correlated with the numbers of c-Fos-ir serotonergic neurons in the mid-rostrocaudal dorsal raphe nucleus (DR) and with a measure of anxiety-related behavior. All four drugs increased c-Fos expression in non-PV-ir cells in most of the subdivisions of the basolateral amygdala that were sampled, compared with vehicle-injected controls. Together, these data suggest that the PV/5-HT(2A) receptor expressing GABAergic interneurons in the basolateral amygdala are part of a DR-basolateral amygdala neuronal circuit modulating anxiety-states and anxiety-related behavior.


Assuntos
Ansiolíticos/farmacologia , Encéfalo/citologia , Interneurônios/efeitos dos fármacos , Parvalbuminas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Cafeína/farmacologia , Carbolinas/farmacologia , Contagem de Células/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Receptor 5-HT2A de Serotonina/metabolismo , Fatores de Tempo , Ioimbina/farmacologia
13.
Exp Neurol ; 224(1): 271-81, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20382145

RESUMO

Serotonin plays an important role in the regulation of anxiety states and physiological responses to aversive stimuli. Intracerebroventricular (i.c.v.) injection of the stress- and anxiety-related neuropeptide urocortin 2 (Ucn 2) increases c-Fos expression in serotonergic neurons in the dorsal (DRD) and caudal (DRC) parts of the dorsal raphe nucleus. These regions contain a subset of serotonergic neurons that projects via the dorsal raphe periventricular tract to periventricular structures, including the subfornical organ and ependymal layer, and to the ventricular system. To determine if Ucn 2 activates ventricle/periventricular-projecting serotonergic neurons in the midbrain raphe complex, we made i.c.v. injections of the retrograde tracer Fluoro-Gold into the lateral ventricle, followed 7 days later by i.c.v. injection of Ucn 2. The DRD at -8.18 mm and the DRC at -8.54 mm and -9.16 mm bregma were analyzed using a combined bright field and immunofluorescence technique. Approximately 40% of the ventricle/periventricular-projecting neurons in the subdivisions sampled were serotonergic. Urocortin 2 increased c-Fos expression in ventricle/periventricular-projecting serotonergic neurons in the DRC and in non-ventricle/periventricular-projecting serotonergic neurons in the DRD and DRC. Of the total population of ventricle/periventricular-projecting serotonergic neurons in the DRC at -8.54 and -9.16 mm bregma, 35% expressed c-Fos following Ucn 2 injections. These data are consistent with previous studies showing that i.c.v. injection of Ucn 2 activates subpopulations of serotonergic neurons restricted to the mid-rostrocaudal DRD and DRC and further demonstrate that these include both subsets of serotonergic neurons that do and do not project to the ventricle/periventricular system.


Assuntos
Neurônios Aferentes/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Serotonina/metabolismo , Terceiro Ventrículo/metabolismo , Urocortinas/farmacologia , Análise de Variância , Animais , Cateteres de Demora , Contagem de Células , Imuno-Histoquímica , Masculino , Marcadores do Trato Nervoso , Neurônios Aferentes/metabolismo , Núcleos da Rafe/metabolismo , Ratos , Ratos Wistar , Triptofano Hidroxilase/metabolismo
14.
Brain Res Bull ; 72(1): 32-43, 2007 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-17303505

RESUMO

Serotonergic systems arising from the mid-rostrocaudal and caudal dorsal raphe nucleus (DR) have been implicated in the facilitation of anxiety-related behavioral responses to anxiogenic drugs or aversive stimuli. In this study we attempted to determine a threshold to engage serotonergic neurons in the DR following exposure to aversive conditions in an anxiety-related behavioral test. We manipulated the intensity of anxiogenic stimuli in studies of male Wistar rats by leaving them undisturbed (CO), briefly handling them (HA), or exposing them to an open-field arena for 15-min under low-light (LL: 8-13 lx) or high-light (HL: 400-500 lx) conditions. Rats exposed to HL conditions responded with reduced locomotor activity, reduced time spent exploring the center of the arena, a lower frequency of rearing and grooming, and an increased frequency of facing the corner of the arena compared to LL rats. Rats exposed to HL conditions had small but significant increases in c-Fos expression within serotonergic neurons in subdivisions of the rostral DR. Exposure to HL conditions did not alter c-Fos responses in serotonergic neurons in any other DR subdivision. In contrast, rats exposed to the open-field arena had increased c-Fos expression in non-serotonergic cells throughout the DR compared to CO rats, and this effect was particularly apparent in the dorsolateral part of the DR. We conclude that exposure to HL conditions, compared to LL conditions, increased anxiety-related behavioral responses in an open-field arena but this stimulus was at or below the threshold required to increase c-Fos expression in serotonergic neurons.


Assuntos
Ansiedade/metabolismo , Luz , Atividade Motora/efeitos da radiação , Neurônios/efeitos da radiação , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Núcleos da Rafe/citologia , Serotonina/metabolismo , Análise de Variância , Animais , Comportamento Animal/efeitos da radiação , Contagem de Células/métodos , Relação Dose-Resposta à Radiação , Expressão Gênica/efeitos da radiação , Imuno-Histoquímica/métodos , Masculino , Neurônios/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Triptofano Hidroxilase/metabolismo
15.
Brain Res Bull ; 71(1-3): 174-82, 2006 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-17113944

RESUMO

Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of forebrain structures including the basolateral amygdaloid complex (basolateral amygdala). Despite a wealth of research examining the role of the basolateral amygdala in anxiety-related behaviors and anxiety states, the specific subdivisions of the basolateral amygdala that are involved in responses to anxiogenic stimuli have not been examined. In this study, we investigated the effects of exposure to a novel open-field environment, with either low- or high-levels of illumination, on expression of the protein product of the immediate-early gene c-Fos in subdivisions of the rat basolateral amygdala. The subdivisions studied included the lateral, ventrolateral and ventromedial parts of the lateral amygdaloid nucleus, the anterior, posterior and ventral parts of the basolateral amygdaloid nucleus and the anterior and posterior part of the basomedial amygdaloid nucleus. Small increases in the number of c-Fos-immunoreactive cells were observed in several, but not all, of the subdivisions of the basolateral amygdala studied following exposure of rats to either the high- or low-light conditions, compared to home cage or handled control groups. Open-field exposure in both the high- and low-light conditions resulted in a marked increase in c-Fos expression in the anterior part of the basolateral amygdaloid nucleus compared to either home cage or handled control groups. These findings point toward anatomical and functional heterogeneity within the basolateral amygdaloid complex and an important role of the anterior part of the basolateral amygdaloid nucleus in the neural mechanisms underlying physiological or behavioral responses to this anxiety-related stimulus.


Assuntos
Tonsila do Cerebelo/metabolismo , Transtornos de Ansiedade/fisiopatologia , Medo/fisiologia , Vias Neurais/metabolismo , Neurônios/metabolismo , Tonsila do Cerebelo/anatomia & histologia , Animais , Biomarcadores/metabolismo , Contagem de Células , Escuridão , Modelos Animais de Doenças , Ambiente Controlado , Imuno-Histoquímica , Luz/efeitos adversos , Masculino , Vias Neurais/anatomia & histologia , Testes Neuropsicológicos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Regulação para Cima/fisiologia
16.
Pharmacol Biochem Behav ; 77(4): 657-66, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15099910

RESUMO

This series of studies used a weakly trained (20% methyl anthranilate) version of the passive avoidance learning task in the 1-day-old chick to investigate memory facilitation effects by diphenylhydantoin (DPH). The results indicated that the pairing of the weak training experience with DPH results in facilitation of memory that can be observed from 40 min following training with the weak training experience. The results from a biochemical experiment indicated that DPH facilitates the activity of Na(+)/K(+)-ATPase at the majority of times sampled in a large percentage of the sections of the chick brain. The most marked level of elevation in the activity of the enzyme was observed at the 20-min time point following weak training in the section of the chick brain, which contained several memory relevant neuroanatomical loci. This represents a 68% increase in the activity of the enzyme in those areas considered to be crucial to the processing of memory in the paradigm at a time predicted by previous investigation to be crucial in the development of the intermediate-term memory stage of memory. The results of this series of studies support the notion that Na(+)/K(+)-ATPase plays an important role in memory processing following passive avoidance training in the 1-day-old chick.


Assuntos
Animais Recém-Nascidos/fisiologia , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Fenitoína/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Encéfalo/enzimologia , Galinhas , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA