Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Biol Macromol ; 255: 128259, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984572

RESUMO

In several types of cancers, the expression of carbonic anhydrase-IX (CA-IX) enzyme is elevated than its normal level which ultimately plays a key role in the tumor growth of epithelial cells in breast and lung cancer by acidifying tumor microenvironment, therefore, inhibition of this target is important in antitumor therapy. We have synthesized bis-benzimidazole derivatives (1-25) by using 3,3'-diaminobenzidine and various aromatic aldehydes and characterized by various spectroscopic methods (UV/Visible, 1HNMR, 13CNMR, and mass spectrometry). Their inhibitory potential for human CA-IX (hCA-IX) was evaluated in-vitro, where several synthesized derivatives showed potent inhibition of hCA-IX (IC50 values in range of 5.23 ± 1.05 to 40.10 ± 1.78 µM) and compounds 3-5, 7-8, 13-16, 21 and 23 showed superior activity than the standard drug "acetazolamide" (IC50 = 18.24 ± 1.43 µM). Furthermore, all these compounds showed no toxicity on human fibroblast cell lines (BJ cell lines). Moreover, molecular docking was carried out to predict their binding modes in the active site of CA-IX and revealed a significant role of imidazole ring of synthesized entities in their effective binding with the specific residues of CA-IX. The obtained results paved the way for further in vivo and other pharmacological studies for the optimization of these molecules as possible anti-cancer agents.


Assuntos
Antineoplásicos , Anidrases Carbônicas , Neoplasias , Humanos , Anidrases Carbônicas/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Inibidores da Anidrase Carbônica/química , Estrutura Molecular , Microambiente Tumoral
2.
Saudi Pharm J ; 31(12): 101877, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38075546

RESUMO

Utilizing multi-target drugs shows great promise as an effective strategy against polygenic diseases characterized by intricate patho-mechanisms, such as ulcers, skin dermatitis, and cancers. The current research centers around the creation of hybrid compounds, connecting dibenzazepine and isoxazole, with the aim of exploring their potential as inhibitors for urease and tyrosinase enzymes. Analogs 6a, 6b, 6d, 6 h-6j, and 6 l demonstrated strong inhibitory potential against tyrosinase enzyme with IC50 values of 4.32 ± 0.31-12.36 ± 0.48. Whereas analogs 6a, 6c, 6e, 6f, 6h-6m, and 6r exhibited potent inhibitory activities against urease enzyme with IC50 values of 3.67 ± 0.91-15.60 ± 0.18 µM. Furthermore, compounds 6i, 6n, and 6r showed weak toxic effect in BJ-cell line, whereas the remaining compounds were found non-toxic to normal cell line. The mechanistic studies of potent inhibitors of both the enzymes showed competitive mode of inhibition. Molecular docking was employed to establish the relationship between structure and activity and to elucidate the interaction mechanism. This analysis revealed that the active analogs exhibited crucial interactions with the active site residues of urease and tyrosinase, thus corroborating our experimental results. Hence, the generated derivatives of dibenzazepine-linked isoxazoles present intriguing starting points for further investigations into their potential as inhibitors of urease and tyrosinase, with the potential for future modification and enhancement.

3.
J Biomol Struct Dyn ; : 1-17, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661778

RESUMO

SIRT1 is a protein associated with vital cell functions such as gene regulation, metabolism, ageing, and cellular energy restoration. Its association with the tumor suppressor protein p53 is essential for controlling the growth of cells, apoptosis, and response to DNA damage. By raising p53 acetylation, encouraging apoptosis, and reducing cell proliferation, inhibiting SIRT1's catalytic domain, which interacts with p53, shows potential as a cancer treatment. The aim of the study is to find compounds that could inhibit SIRT1 and thus lower the proliferation of cancer cells. Employing molecular docking techniques, a virtual screening of ∼900 compounds (isolated from medicinal plants and derivatives) gave us 13 active compounds with good binding affinity. Additional evaluation of pharmacokinetic and pharmacodynamic properties led to the selection of eight compounds with desirable properties. Docking analysis confirmed stable interactions between the final eight compounds (C1-C8) and the SIRT1 catalytic domain. Molecular dynamics simulations show overall stability and moderate changes in protein structure upon compound binding. The compactness of the protein indicated the protein's tight packing upon the inhibitors binding. Binding free energy calculations revealed that compounds C2 (-49.96 ± 0.073 kcal/mol and C1 (-44.79 ± 0.077 kcal/mol) exhibited the highest energy, indicating strong binding affinity to the SIRT1 catalytic domain. These compounds, along with C8, C5, C6, C3, C4 and C7, showed promising potential as SIRT1 inhibitors. Based on their ability to reduce SIRT1 activity and increase apoptosis, the eight chemicals discovered in this work may be useful in treating cancer.Communicated by Ramaswamy H. Sarma.

4.
ACS Omega ; 8(28): 25370-25377, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483213

RESUMO

Hepatitis C virus (HCV) is one of the most prevalent pathogens which causes significant morbidity and mortality in 2% of the world's population. Several interferon-stimulated genes (ISGs) are involved in HCV clearance by interacting with the viral proteins. Among these ISGs, the tripartite motif (TRIM) family genes are elevated during HCV infection. This study aims to evaluate the expression of three TRIM family genes in chronic hepatitis C patients, distributed among different groups, including TRIM11, TRIM14, and TRIM25. A total of 242 participants were recruited in this study, including 182 infected patients, 37 naïve individuals, and 23 control individuals. Out of 182 infected patients, 100 achieved sustained virologic response (SVR), 61 achieved rapid virologic response (RVR), and 21 patients developed hepatocellular carcinoma (HCC), showing no response to the given treatments. Our results indicate highest expression levels of TRIM mRNA transcripts in the RVR group with the highest increase of 7.5 folds in TRIM25, 6.68 folds in TRIM14, followed by the data from patients of the SVR group. The elevation was also evident in other groups, i.e., SVR and HCC, in different patterns among all the three TRIM genes. In addition to elevation in expression levels, a linear correlation is observed between the TRIM mRNAs and viral loads of HCV. These results showed the potential role of TRIM family genes in HCV restriction.

5.
ACS Omega ; 8(16): 14784-14791, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37125127

RESUMO

Hepatitis C virus (HCV) is a major public health problem that affects more than 170 million people globally. HCV is a principal cause of hepatocellular carcinoma (HCC) around the globe due to the high frequency of hepatitis C infection, and the high rate of HCC is seen in patients with HCV cirrhosis. TP53 is considered as a frequently altered gene in all cancer types, and it carries an interferon response element in its promoter region. In addition to that, the TP53 gene also interacts with different HCV proteins. HCV proteins especially NS3 protein and core protein induce the mutations in the TP53 gene that lower the expression of this gene in HCV patients and leads to HCC development. In this study, we examined the transcriptional analysis of the TP53 gene in HCV-infected patients administered with different combinations of antiviral therapies including sofosbuvir + daclatasvir, sofosbuvir + ribavirin, and pegylated interferon + ribavirin. This study included 107 subjects; 15 treated with sofosbuvir + daclatasvir, 58 treated with sofosbuvir + ribavirin, 11 treated with interferon + ribavirin, 8 untreated, 10 HCC patients, and 5 were healthy controls. Total RNA was extracted from the PMBCs of HCV infected patients and reverse transcribed into cDNA using a gene specific reverse primer. The expression level of TP53 mRNA was analyzed using quantitative PCR. The expression of TP53 mRNA was notably upregulated in rapid virological response (RVR), early virological response (EVR), and sustained virological response (SVR) groups as compared to non-responders and naïve groups. The expression of TP53 mRNA was seen high in HCC as compared to control groups. Additionally, it has been demonstrated that sofosbuvir + daclatasvir treatment stimulates significant elevation in TP53 gene expression as compared to (sofosbuvir + ribavirin) and (IFN + ribavirin) treatment. This study indicates that the TP53 gene expression is highly upregulated in RVR, EVR, and SVR groups as compared to control groups. Moreover, sofosbuvir + daclatasvir therapy induces significant rise in TP53 mRNA expression levels as compared to (sofosbuvir + ribavirin) and (IFN + ribavirin) treatment. According to these results, it can be concluded that sofosbuvir + daclatasvir plays a significant role in preventing HCV patients from developing severe liver complications as compared to other administered therapies. This study is novel as no such type of study has been conducted previously on the expression of TP53 in local HCV-infected population treated with different combinations of therapies. This study is helpful for the development of new therapeutic strategies and for improving existing therapies.

6.
Int J Biol Macromol ; 240: 124428, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062383

RESUMO

Bilophila wadsworthia is one of the prominent sources of hydrogen sulfide (H2S) production in appendices, excessive levels of which can result in a weaker colonic mucus barrier, inflammatory bowel disease, and colorectal cancer. Isethionate sulfite-lyase (IslA) enzyme catalyzes H2S production by cleaving CS bond in isethionate, producing acetaldehyde and sulfite. In this study, we aimed to identify potential substrate antagonists for IsIA using a structure-based drug design. Initially, pharmacophore-based computational screening of the ZINC20 database yielded 66 hits that were subjected to molecular docking targeting the isethionate binding site of IsIA. Based on striking docking scores, nine compounds showed strong interaction with critical IsIA residues (Arg189, Gln193, Glu470, Cys468, and Arg678), drug-like features, appropriate adsorption, metabolism, excretion, and excretion profile with non-toxicity. Molecular dynamics simulations uncovered the significant impact of binding the compounds on protein conformational dynamics. Finally, binding free energies revealed substantial binding affinity (ranging from -35.23 to -53.88 kcal/mol) of compounds (ZINC913876497, ZINC913856647, ZINC914263733, ZINC914137795, ZINC915757996, ZINC914357083, ZINC913934833, ZINC9143362047, and ZINC913854740) for IsIA. The compounds proposed herein through a multi-faceted computational strategy can be experimentally validated as potential substrate antagonists of B. wadsworthia's IsIA for developing new medications to curb gut-associated illness in the future.


Assuntos
Bilophila , Liases , Simulação de Acoplamento Molecular , Bilophila/metabolismo , Liases/metabolismo , Simulação de Dinâmica Molecular , Sulfitos/metabolismo , Ligantes
7.
Cell Physiol Biochem ; 57(2): 105-122, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37052042

RESUMO

BACKGROUND/AIMS: Macrophages interact with tumor cells within the tumor microenvironment (TME), which plays a crucial role in tumor progression. Cancer cells also can instruct macrophages to facilitate the spread of cancer and the growth of tumors. Thus, modulating macrophages-cancer cells interaction in the TME may be therapeutically beneficial. Although calcitriol (an active form of vitamin D) has anticancer properties, its role in TME is unclear. This study examined the role of calcitriol in the regulation of macrophages and cancer cells in the TME and its influence on the proliferation of breast cancer cells. METHODS: We modeled the TME, in vitro, by collecting conditioned medium from cancer cells (CCM) and macrophages (MCM) and culturing each cell type separately with and without (control) a high-dose (0.5 µM) calcitriol (an active form of vitamin D). An MTT assay was used to examine cell viability. Apoptosis was detected using FITC (fluorescein isothiocyanate) annexin V apoptosis detection kit. Western blotting was used to separate and identify proteins. Quantitative real-time PCR was used to analyze gene expression. Molecular docking studies were performed to evaluate the binding type and interactions of calcitriol to the GLUT1 and mTORC1 ligand-binding sites. RESULTS: Calcitriol treatment suppressed the expression of genes and proteins implicated in glycolysis (GLUT1, HKII, LDHA), promoted cancer cell apoptosis, and reduced viability and Cyclin D1gene expression in MCM-induced breast cancer cells. Additionally, calcitriol treatment suppressed mTOR activation in MCM-induced breast cancer cells. Molecular docking studies further showed efficient binding of calcitriol with GLUT1 and mTORC1. Calcitriol also inhibited CCM-mediated induction of CD206 and increased TNFα gene expression in THP1-derived macrophages. CONCLUSION: The results suggest that calcitriol may impact breast cancer progression by inhibiting glycolysis and M2 macrophage polarization via regulating mTOR activation in the TME and warrants further investigation in vivo.


Assuntos
Neoplasias da Mama , Calcitriol , Humanos , Feminino , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Simulação de Acoplamento Molecular , Microambiente Tumoral/genética , Serina-Treonina Quinases TOR/metabolismo , Macrófagos/metabolismo , Neoplasias da Mama/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Glicólise , Proliferação de Células/genética , Linhagem Celular Tumoral , Ativação de Macrófagos
8.
Int J Biol Macromol ; 239: 124320, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004935

RESUMO

Coxsackievirus B3 (CVB3) is a viral pathogen of various human disorders with no effective preventative interventions. Herein, we aimed to design a chimeric vaccine construct for CVB3 using reverse vaccinology and immunoinformatics approaches by screening the whole viral polyprotein sequence. Firstly, screening and mapping of viral polyprotein to predict 21 immunodominant epitopes (B-cell, CD8+ and CD4+ T-cell epitopes), fused with an adjuvant (Resuscitation-promoting factor), appropriate linkers, HIV-TAT peptide, Pan DR epitope, and 6His-tag to assemble a multi-epitope vaccine construct. The chimeric construct is predicted as probable antigen, non-allergen, stable, possess encouraging physicochemical features, and indicates a broader population coverage (98 %). The tertiary structure of the constructed vaccine was predicted and refined, and its interaction with the Toll-like receptor 4 (TLR4) was investigated through molecular docking and dynamics simulation. Computational cloning of the construct was carried out in pET28a (+) plasmid to guarantee the higher expression of the vaccine protein. Lastly, in silico immune simulation foreseen that humoral and cellular immune responses would be elicited in response to the administration of such a potent chimeric construct. Thus, the design constructed could vaccinate against CVB3 infection and various CVB serotypes. However, further in vitro/in vivo research must assess its safety and effectiveness.


Assuntos
Epitopos de Linfócito T , Imunidade Humoral , Humanos , Simulação de Acoplamento Molecular , Epitopos de Linfócito T/química , Vacinas de Subunidades Antigênicas , Biologia Computacional , Epitopos de Linfócito B
9.
J Biomol Struct Dyn ; 41(24): 14771-14785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36927289

RESUMO

Human immune system is specialized in distinguishing normal cells from foreign particles mainly through proteins expressed on immune cells called 'checkpoints'. Immune checkpoints work as a switch to activate and deactivate immune responses. T cells express one of the immune checkpoint, human programmed cell death-1 (PD-1), which normally operates as an off-switch function to protect the normal cell from T-cell attack. Binding of PD-1 to its ligand, the programmed cell death ligand (PD-L1/2) expressed on myeloid/cancer cells, induce downstream inhibitory signals, leading to tumor immune evasion. Targeting PD-1 or PD-L1 can boost the immune response against cancer cells. To design novel small molecule inhibitors for the PD-1, in silico structure-based screening on pharmacophoric points and molecular docking were performed. Based on the docking score and significant binding interaction with the crucial residues of PD-1 (Thr59, Glu61, Ser62, Glu84, Arg86 and Ala132), compounds were selected from the ZINC20 database, and their dynamic behavior and conformational stability were examined through molecular dynamic simulations. Besides, the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method was used to calculate the binding strength of each selected inhibitor complexed with PD-1. The binding energy calculations revealed that these selected inhibitors show a considerable affinity for PD-1. The selected novel inhibitors exhibit excellent drug-like and pharmacokinetic properties (absorption, distribution, metabolism, excretion and toxicity). In conclusion, the identified novel compounds (ZINC1443480030, ZINC1002854123, ZINC988238128, ZINC1481242350, ZINC1001739421, ZINC1220816434 and ZINC1167786692) from the current study can be validated in-vitro as potential PD-1 inhibitors and for discovery of novel drugs against PD-1 in the future.Communicated by Ramaswamy H. Sarma.


Assuntos
Antígeno B7-H1 , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Receptor de Morte Celular Programada 1 , Ligantes , Apoptose
10.
ACS Omega ; 8(6): 5975-5982, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816652

RESUMO

Leukemia is a proliferative disorder of myeloid and lymphoid cells that may lead to death. Different types of leukemia have been reported, and several genetic and environmental factors are involved in their development. The Philadelphia chromosome causes the most common mutation known as breakpoint cluster region-Abelson oncogene (BCR-ABL1), which shows abnormal protein tyrosine kinase (PTK) activity. Basically, this activity is accountable for activating multiple pathways, including the inhibition of cell differentiation, controlled proliferation, and cell death. As a result of the absence of kinase activity, this mutation leads to the uncontrolled proliferation of leukocytes, causing chronic myeloid leukemia (CML), acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), and chronic lymphocytic leukemia (CLL). This study aimed to evaluate the level of BCR-ABL1 expression in patients with these types of leukemias through qPCR. In brief, PBMCs were isolated from blood samples of patients, RNA was extracted from PBMCs, cDNA was synthesized, and the transcript levels of BCR-ABL1 in patients with each type of leukemia were determined by qPCR. The clinical, demographical, and experimental data were analyzed among CML, AML, and ALL patients. Results: The BCR-ABL1 expression levels are variable in all studied groups and are 90, 30-35, and 1-2.5% in CML, ALL, and AML, respectively. Demographic characteristics such as gender, BMI, age, family history, and clinical parameters along with CBC are also associated with the prevalence and diagnosis of leukemia. In a comparative expression analysis, the expression of BCR-ABL1 is onefold high in AML, but four- and sevenfold high in ALL and CML, respectively, as compared with normal levels. Conclusions: In this study, a significant difference was observed in the expression levels of BCR-ABL1 between CML (p = 0.0043) and ALL (p = 0.0006) and between CML and AML groups, and a high expression of BCR-ABL1 was noted in CML as compared with ALL and AML.

11.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36765864

RESUMO

A glycal radical enzyme called isethionate sulfite-lyase (Isla) breaks the C-S bond in isethionate to produce acetaldehyde and sulfite. This enzyme was found in the Gram-negative, colonial Bilophila wadsworthia bacteria. Sulfur dioxide, acetate, and ammonia are produced by the anaerobic respiration route from (sulfonate isethionate). Strong genotoxic H2S damages the colon's mucous lining, which aids in the development of colorectal cancer. H2S production also contributes to inflammatory bowel diseases such as colitis. Here, we describe the structure-based drug designing for the Isla using an in-house database of naturally isolated compounds and synthetic derivatives. In structure-based drug discovery, a combination of methods was used, including molecular docking, pharmacokinetics properties evaluation, binding free energy calculations by the molecular mechanics/generalized born surface area (MM/GBSA) method, and protein structure dynamics exploration via molecular dynamic simulations, to retrieve novel and putative inhibitors for the Isla protein. Based on the docking score, six compounds show significant binding interaction with the Isla active site crucial residues and exhibit drug-like features, good absorption, distribution, metabolism, and excretion profile with no toxicity. The binding free energy reveals that these compounds have a strong affinity with the Isla. In addition, the molecular dynamics simulations reveal that these compounds substantially affect the protein structure dynamics. As per our knowledge, this study is the first attempt to discover Isla potential inhibitors. The compounds proposed in the study using a multi-fold computational technique may be verified in vitro as possible inhibitors of Isla and possess the potential for the future development of new medications that target Isla.

12.
Cancers (Basel) ; 14(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291864

RESUMO

Imidazole-based pyrimidine hybrids are considered a remarkable class of compounds in pharmaceutical chemistry. Here, we report the anticancer bioactivities of eleven imidazole-based pyrimidine hybrids (1-11) that specifically target cytosolic carbonic anhydrase (CAs) isoenzymes, including human CA-II and human CA-IX (hCA-II, and hCA-IX). A highly eco-friendly aqueous approach was used for the formation of a carbon-carbon bond by reacting aromatic nitro group substitution of nitroimidazoles with carbon nucleophiles. The in vitro results indicate that this new class of compounds (1-11) includes significant inhibitors of hCA IX with IC50 values in the range of 9.6 ± 0.2-32.2 ± 1.0 µM, while hCA II showed IC50 values in range of 11.6 ± 0.2-31.1 ± 1.3 µM. Compound 2 (IC50 = 12.3 ± 0.1 µM) showed selective inhibition for hCA-II while 7, 8, and 10 (IC50 = 9.6-32.2 µM) were selective for hCA-IX. The mechanism of action was investigated through in vitro kinetics studies that revealed that compounds 7, 3, 11, 10, 4, and 9 for CA-IX and 1, 2, and 11 for CA-II are competitive inhibitors with dissociation constant (Ki) in the range of 7.32-17.02 µM. Furthermore, the in situ cytotoxicity of these compounds was investigated in the human breast cancer cell line MDA-MB-231 and compared with the normal human breast cell line, MCF-10A. Compound 5 showed excellent anticancer/cytotoxic activity in MDA-MB-231 with no toxicity to the normal breast cells. In addition, in silico molecular docking was employed to predict the binding mechanism of active compounds with their targets. This in silico observation aligned with our experimental results. Our findings signify that imidazole-based hybrids could be a useful choice to design anticancer agents for breast and lung tumors, or antiglaucoma compounds, by specific inhibition of carbonic anhydrases.

13.
Curr Pharm Des ; 28(36): 3010-3022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909284

RESUMO

BACKGROUND: Carbonic anhydrase II (CA-II) is associated with calcification, tumorigenicity, epilepsy, osteoporosis, and several other physiological or pathological processes. CA-II inhibitors can be used to reduce the intraocular pressure usually associated with glaucoma. OBJECTIVE: In search for potent CA-II inhibitors, a series of thiosemicarbazone derivatives (3a-u) was synthesized. METHODS: This series was evaluated against bovine and human carbonic anhydrase II (bCA-II and hCA-II) and their docking studies were carried out. RESULTS: In the preliminary screening, most of the compounds exhibited significant inhibition of bCA-II and hCA-II. The predictive structure-activity relationship suggested that the thiosemicarbazide moiety plays a key role in the inhibition of enzyme activity and substitution at R position and has a remarkable contribution to the overall activity. The kinetic studies of the most active inhibitors of bCA-II (3d, 3e, 3l, 3f, and 3p) and hCA-II (3g) were performed against bCA-II and hCA-II, respectively to investigate their mode of inhibition and dissociation constants (Ki). CONCLUSION: Subsequently, (3e, 3f, 3l and 3p) were identified as competitive inhibitors of bCA-II with Ki values of 5.02-14.70 µM, while (3d) as a noncompetitive inhibitor of bCA-II (Ki = 2.5 ± 0.015 µM), however, (3g) demonstrated competitive inhibition of hCA-II with a Ki value of 5.95 ± 0.002 µM. The selectivity index reflects that compound (3g) is more selective for hCA-II. The binding modes of these compounds with bCA-II and hCA-II were investigated by structure-based molecular docking, and the docking results are in complete agreement with the experimental findings.


Assuntos
Anidrase Carbônica II , Tiossemicarbazonas , Humanos , Bovinos , Animais , Anidrase Carbônica II/metabolismo , Tiossemicarbazonas/farmacologia , Simulação de Acoplamento Molecular , Cinética , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Relação Estrutura-Atividade , Estrutura Molecular
14.
Nanomaterials (Basel) ; 12(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35564184

RESUMO

Cancer is by far the most common cause of death worldwide. There are more than 200 types of cancer known hitherto depending upon the origin and type. Early diagnosis of cancer provides better disease prognosis and the best chance for a cure. This fact prompts world-leading scientists and clinicians to develop techniques for the early detection of cancer. Thus, less morbidity and lower mortality rates are envisioned. The latest advancements in the diagnosis of cancer utilizing nanotechnology have manifested encouraging results. Cancerous cells are well known for their substantial amounts of hydrogen peroxide (H2O2). The common methods for the detection of H2O2 include colorimetry, titration, chromatography, spectrophotometry, fluorimetry, and chemiluminescence. These methods commonly lack selectivity, sensitivity, and reproducibility and have prolonged analytical time. New biosensors are reported to circumvent these obstacles. The production of detectable amounts of H2O2 by cancerous cells has promoted the use of bio- and electrochemical sensors because of their high sensitivity, selectivity, robustness, and miniaturized point-of-care cancer diagnostics. Thus, this review will emphasize the principles, analytical parameters, advantages, and disadvantages of the latest electrochemical biosensors in the detection of H2O2. It will provide a summary of the latest technological advancements of biosensors based on potentiometric, impedimetric, amperometric, and voltammetric H2O2 detection. Moreover, it will critically describe the classification of biosensors based on the material, nature, conjugation, and carbon-nanocomposite electrodes for rapid and effective detection of H2O2, which can be useful in the early detection of cancerous cells.

15.
Life Sci ; 301: 120610, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35525305

RESUMO

AIMS: Breast cancer metastasis is the leading cause of mortality among breast cancer patients. Epithelial to mesenchymal transition (EMT) is a biological process that plays a fundamental role in facilitating breast cancer metastasis. The present study assessed the efficacy of parthenolide (PTL Tanacetum parthenium) on EMT and its underlying mechanisms in both lowly metastatic, estrogen-receptor positive, MCF-7 cells and highly metastatic, triple-negative MDA-MB-231 cells. MAIN METHODS: MCF-7 and MDA-MB-231 cells were treated with PTL (2 µM and 5 µM). Cell viability was determined by MTT (3-(4,5-dimethy lthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Apoptosis was analyzed by the FITC (fluorescein isothiocyanate) annexin V apoptosis detection kit. The monolayer wound scratch assay was employed to evaluate cancer cell migration. Proteins were separated and identified by Western blotting. Gene expression was analyzed by quantitative real-time PCR. KEY FINDINGS: PTL treatment significantly reduced cell viability and migration while inducing apoptosis in both cell lines. Also, PTL treatment reverses the EMT process by decreasing the mesenchymal marker vimentin and increasing the epithelial marker E-cadherin compared to the control treatment. Importantly, PTL downregulates TWIST1 (a transcription factor and regulator of EMT) gene expression, concomitant with the reduction of transforming growth factor beta1 (TGFß1) protein and gene expression in both cell lines. Additionally, molecular docking studies suggest that PTL may induce anticancer properties by targeting TGFß1 in both breast cancer cell lines. SIGNIFICANCE: Our findings provide insights into the therapeutic potential of PTL to mitigate EMT and breast cancer metastasis. These promising results demand in vivo studies.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Simulação de Acoplamento Molecular , Sesquiterpenos , Fator de Crescimento Transformador beta1/metabolismo
16.
Biomed Pharmacother ; 147: 112669, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121344

RESUMO

ß-Boswellic acid (ß-BA) and 11-keto-ß-boswellic acid (ß-KBA) are crucial bioactive compounds, mostly isolated from frankincense. These compounds are known for their potent anticancer and anti-inflammatory activities. Herein, we have explored the complete anti-diabetic potential of ß-BA and ß-KBA with detailed parameters. This research revealed that treatment with ß-BA and ß-KBA at a dose of 1, 2, and 10 mg/kg body weight for 21 days significantly improved body weight loss, water consumption, and specifically the concentration of blood glucose level (BGL) in diabetic animals, which indicated that the ß-BA and ß-KBA possess strong anti-diabetic activities. Serum total superoxide dismutase (SOD) and malondialdehyde (MDA) assays were also performed to evaluate the antioxidant effects. The biochemical analysis revealed that these compounds improve an abnormal level of several biochemical parameters like serum lipid values including total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-C) to a normal level and the high-density lipoprotein cholesterol level (HDL-C). To understand the mechanism of action of ß-BA and ß-KBA, their most probable biological targets were searched through the inverse docking approach. Our computational analysis reflects that among other probable targets, the Dipeptidyl peptidase 4 (DPP-4) enzyme could be one of the possible binders of ß-BA and ß-KBA to produce their anti-diabetic activities. These in-silico results were validated by an in-vitro experiment. It indicates that the anti-diabetic effects of ß-BA and ß-KBA are produced by the inhibition of DDP-4. Thus, these anti-diabetic, antioxidant, and anti-hyperlipidemic effects of ß-BA and ß-KBA suggest these compounds as potential therapeutics for diabetic conditions.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Animais , Glicemia/efeitos dos fármacos , Boswellia , Dipeptidil Peptidase 4/farmacologia , Relação Dose-Resposta a Droga , Lipídeos/sangue , Malondialdeído/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estreptozocina , Superóxido Dismutase/efeitos dos fármacos , Triterpenos/administração & dosagem , Redução de Peso/efeitos dos fármacos
17.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164091

RESUMO

Carbonic anhydrase-II (CA-II) is strongly related with gastric, glaucoma, tumors, malignant brain, renal and pancreatic carcinomas and is mainly involved in the regulation of the bicarbonate concentration in the eyes. With an aim to develop novel heterocyclic hybrids as potent enzyme inhibitors, we synthesized a series of twelve novel 3-phenyl-ß-alanine 1,3,4-oxadiazole hybrids (4a-l), characterized by 1H- and 13C-NMR with the support of HRESIMS, and evaluated for their inhibitory activity against CA-II. The CA-II inhibition results clearly indicated that the 3-phenyl-ß-alanine 1,3,4-oxadiazole derivatives 4a-l exhibited selective inhibition against CA-II. All the compounds (except 4d) exhibited good to moderate CA-II inhibitory activities with IC50 value in range of 12.1 to 53.6 µM. Among all the compounds, 4a (12.1 ± 0.86 µM), 4c (13.8 ± 0.64 µM), 4b (19.1 ± 0.88 µM) and 4h (20.7 ± 1.13 µM) are the most active hybrids against carbonic CA-II. Moreover, molecular docking was performed to understand the putative binding mode of the active compounds. The docking results indicates that these compounds block the biological activity of CA-II by nicely fitting at the entrance of the active site of CA-II. These compounds specifically mediating hydrogen bonding with Thr199, Thr200, Gln92 of CA-II.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Oxidiazóis/química , Oxidiazóis/farmacologia , Alanina/análogos & derivados , Alanina/síntese química , Alanina/farmacologia , Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Domínio Catalítico/efeitos dos fármacos , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Oxidiazóis/síntese química
18.
J Biomol Struct Dyn ; 40(17): 7680-7692, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33779506

RESUMO

Reverse transcriptase is the most therapeutic target for the discovery of novel, potent, and non-toxic new anti-retroviral drugs. In the present work, various docking software such as Sybyl Surflex-Dock, OpenEye FRED, and Hermes GOLD were evaluated for their efficiency to reproduce known cognate inhibitors' conformations. Three metrics were used and compared to assess the performance of the applied scoring functions, i.e. enrichment factor, receiver operating characteristic (ROC) curves, and Bedroc analysis. Twelve different scoring functions of three softwares were used to assess their ability to rank the cognate ligand within the active site of its proteins. The extensive virtual screening task was performed on eight crystal structures, and the performance of docking and scoring was assessed by their ability to efficiently detect known active compounds enriched in the top-ranked of the list among a randomly selected dataset of the ten thousand compounds of the NCI database. The effectiveness of post-docking relaxation in Surflex was also evaluated. The top 20, 50, and 100 compounds were selected based on consensus scoring functions from all 48 proteins with different ligand complexes. Further, the shortlisted leads were subjected to ADMET via using Discovery Studio. The results further implicate the importance of various statistical tools that should be followed before large-scale virtual screening for the drug discovery process. In silico results demonstrating the experiment was successful. The study of the research covers the combinatorial in silico techniques such as benchmarking of the softwares and scoring functions, statistical tools applied for screening and different conformations of HIV-RT crystal structures for virtual screening with rigid and flexible molecular docking and molecular dynamics simulation approach. This study reveals a clear roadmap to identify novel scaffolds against HIV-RT for antiretroviral therapy, thus providing the remedial solutions of HIV related infections and other diseases caused by malfunctioning of the target protein.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Software , Ligantes , Simulação de Acoplamento Molecular , Proteínas/química , DNA Polimerase Dirigida por RNA
19.
Biomed Pharmacother ; 143: 112131, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560545

RESUMO

Despite a large number of liver disorders, clinically useful drugs are scarce. Moreover, the available therapies are facing the challenges of efficacy and safety. Commipohora mukul has been used in folk medicine globally for millennia for the treatment of several ailments. The current study was designed to evaluate the possible hepatoprotective activity of Myrrhanone B (MN) and Myrrhanol B (ML) isolated from C. mukul using an animal model. The animals (Swiss albino mice) were segregated into seven groups, each comprising six mice. The first group was treated with normal saline at a dose of 1 ML/kg daily intraperitoneally (i.p.) for one week. The second group was treated with acetaminophen (APAP) (250 mg/kg, i.p.), it was taken as a negative control. Group 3 was used as a positive control (treated with Silymarin (100 mg/kg, i.p.)). While groups 4-7 were used as experimental groups (termed as groups II to IV), which were treated with ML and MN at a dose of 0.6 mg/kg, and 1.2 mg/kg (i.p.) for one week. Subsequently, blood serum and liver tissue samples were collected for biochemical and histopathological analysis. Both compounds significantly improved the levels of liver biomarkers including aspartate transaminase (AST), alkaline phosphatase (ALP), bilirubin, lactate dehydrogenase (LDH), and alanine transaminase (ALT) as compared to the normal saline-treated group in APAP-induced hepatotoxic mice. Moreover, both compounds significantly modulated the expression of oxidative biomarkers including superoxide dismutase (SOD), reduced glutathione (GSH), and catalase (CAT) at the same doses. Additionally, ML and MN showed a remarkable improvement in histological changes with only mild inflammation, mild hemorrhage, no necrosis, and no pyknosis as compared to the control groups. In conclusion, MN and ML exhibited significant hepatoprotective effects in the animal model used in this study.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Commiphora , Fígado/efeitos dos fármacos , Resinas Vegetais/farmacologia , Triterpenos/farmacologia , Acetaminofen , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Commiphora/química , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Resinas Vegetais/isolamento & purificação , Triterpenos/isolamento & purificação
20.
Alzheimers Dement (Amst) ; 13(1): e12186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33969176

RESUMO

INTRODUCTION: We investigated the frequency, neuropathology, and phenotypic characteristics of spastic paraplegia (SP) that precedes dementia in presenilin 1 (PSEN1) related familial Alzheimer's disease (AD). METHODS: We performed whole exome sequencing (WES) in 60 probands with hereditary spastic paraplegia (HSP) phenotype that was negative for variants in known HSP-related genes. Where PSEN1 mutation was identified, brain biopsy was performed. We investigated the link between HSP and AD with PSEN1 in silico pathway analysis and measured in vivo the stability of PSEN1 mutant γ-secretase. RESULTS: We identified a PSEN1 variant (p.Thr291Pro) in an individual presenting with pure SP at 30 years of age. Three years later, SP was associated with severe, fast cognitive decline and amyloid deposition with diffuse cortical plaques on brain biopsy. Biochemical analysis of p.Thr291Pro PSEN1 revealed that although the mutation does not alter active γ-secretase reconstitution, it destabilizes γ-secretase-amyloid precursor protein (APP)/amyloid beta (Aßn) interactions during proteolysis, enhancing the production of longer Aß peptides. We then extended our analysis to all 226 PSEN1 pathogenic variants reported and show that 7.5% were associated with pure SP onset followed by cognitive decline later in the disease. We found that PSEN1 cases manifesting initially as SP have a later age of onset, are associated with mutations located beyond codon 200, and showed larger diffuse, cored plaques, amyloid-ring arteries, and severe CAA. DISCUSSION: We show that pure SP can precede dementia onset in PSEN1-related familial AD. We recommend PSEN1 genetic testing in patients presenting with SP with no variants in known HSP-related genes, particularly when associated with a family history of cognitive decline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA