Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Platelets ; 34(1): 2237592, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37577973

RESUMO

Although thrombocytopenia in neonatal intensive care patients is rarely due to inherited disorders, the number of genetic variants implicated in platelet defects has grown dramatically with increasing genome-wide sequencing. Here we describe a case of severe, oligogenic neonatal thrombocytopenia and reinterpret a reportedly benign mutation that is likely pathogenic. Despite this patient's synonymous mutation (GFI1B 576 C>T, Phe192=) being annotated as benign, GFI1B is a well-known regulator of megakaryopoiesis, this variant alters splicing and megakaryocyte maturation, and our analysis of existing genome-wide associated studies demonstrates that it likely causes gray platelet syndrome. This variant has not been reported in a case of life-threatening thrombocytopenia. We propose that the severity of this patient's phenotype is due to synergistic epistasis between the intrinsic platelet defect caused by this mutation and her concomitant inherited PMM2 congenital glycosylation disorder neither of which have been associated with such a severe phenotype. This case highlights the importance of whole-exome/genome sequencing for critically ill patients, reexamining variant interpretation when clinically indicated, and the need to study diverse genetic variation in hematopoiesis.


What is the context? Low platelets (thrombocytopenia) in the neonatal population is not frequently inherited. As we perform unbiased DNA sequencing in more patients, the number of inherited platelet disorders and implicated variants is growing.The gene GFI1B encodes for a transcription factor that regulates megakaryocytes, the cell type that produces platelets. A synonymous substitution in GFI1B (576 C>T, Phe192=) is annotated as benign; however, experimental studies have shown that it inhibits megakaryocyte production.There is growing appreciation for oligogenic inheritance, where multiple causal variants contribute to clinical phenotypes.What is new? We present a case of life-threatening neonatal macrothrombocytopenia (large, hypogranulated sparse platelets) that has an oligogenic cause. We reinterpret the synonymous substitution GFI1B 576 C>T as pathogenic.This patient's severe phenotype was likely due to the combined effect of GFI1B 576 C>T and her inherited glycosylation disorder (PMM2-CDG). Neither variant alone causes severe thrombocytopenia, but the combined intrinsic platelet defect (GFI1B mutation) and consumption (PMM2-CDG) likely produced her life-threatening phenotype.What is the impact? GFI1B is a critical regulator of megakaryocyte production. The purportedly benign mutation 576 C>T is likely pathogenic causing thrombocytopenia by impairing megakaryocyte maturation.As more patients have unbiased genome sequencing, oligogenic and polygenic inheritance will become increasingly appreciated as causes of platelet disorders.NICU providers should consider whole genome or exome sequencing of neonates with severe thrombocytopenia after reversible causes are ruled out.


Assuntos
Trombocitopenia Neonatal Aloimune , Feminino , Humanos , Megacariócitos/patologia , Proteínas Repressoras , Plaquetas/patologia , Mutação , Proteínas Proto-Oncogênicas/genética
2.
Clin Case Rep ; 10(3): e05513, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35251648

RESUMO

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an inherited cancer predisposition syndrome caused by autosomal dominant heterozygous pathogenic variants in the fumarate hydratase (FH) gene. FH pathogenic variant carriers are at an increased risk for cutaneous leiomyomas, renal cell cancer, and uterine fibroids. We present a case series of patients identified at two different medical institutions with clinically diagnostic features of HLRCC and a shared rare variant in the FH gene.

3.
Am J Med Genet A ; 185(1): 119-133, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098347

RESUMO

Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype.


Assuntos
Eczema/diagnóstico , Eczema/genética , Predisposição Genética para Doença , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Histona Desacetilases/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Proteínas Repressoras/genética , Adolescente , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Eczema/patologia , Exoma/genética , Fácies , Feminino , Genoma Humano/genética , Genômica/métodos , Transtornos do Crescimento/patologia , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Fenótipo , Sequenciamento do Exoma
4.
Genet Med ; 15(9): 729-32, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23492874

RESUMO

PURPOSE: We report on a case in which cell-free fetal DNA was positive for trisomy 13 most likely due to confined placental mosaicism. Cell-free fetal DNA testing analyzes DNA derived from placental trophoblast cells and can lead to incorrect results that are not representative of the fetus. METHODS: We sought to confirm commercial cell-free fetal DNA testing results by chorionic villus sampling and amniocentesis. These results were followed up by postnatal chromosome analysis of cord blood and placental tissue. RESULTS: First-trimester cell-free fetal DNA test results were positive for trisomy 13. Cytogenetic analysis of chorionic villus sampling yielded a mosaic karyotype of 47,XY,+13[10]/46,XY[12]. G-banded analysis of amniotic fluid was normal, 46,XY. Postnatal cytogenetic analysis of cord blood was normal. Karyotyping of tissues from four quadrants of the placenta demonstrated mosaicism for trisomy 13 in two of the quadrants and a normal karyotype in the other two. CONCLUSION: Our case illustrates several important aspects of this new testing methodology: that cell-free fetal DNA may not be representative of the fetal karyotype; that follow-up with diagnostic testing of chorionic villus sampling and/or amniotic fluid for abnormal test results should be performed; and that pretest counseling regarding the full benefits, limitations, and possible testing outcomes of cell-free fetal DNA screening is important.


Assuntos
Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Testes Genéticos/métodos , Mosaicismo , Placenta , Diagnóstico Pré-Natal , Trissomia/diagnóstico , Trissomia/genética , Adulto , Líquido Amniótico , Vilosidades Coriônicas , Amostra da Vilosidade Coriônica , Cromossomos Humanos Par 13/genética , Feminino , Feto , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Cariótipo , Masculino , Gravidez , Primeiro Trimestre da Gravidez , Síndrome da Trissomia do Cromossomo 13 , Trofoblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA