Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 96(1): 221-7, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27511858

RESUMO

PURPOSE: Understanding the DNA damage and repair induced by hadron therapy (HT) beams is crucial for developing novel strategies to maximize the use of HT beams to treat cancer patients. However, spatiotemporal studies of DNA damage and repair for beam energies relevant to HT have been challenging. We report a technique that enables spatiotemporal measurement of radiation-induced damage in live cells and colocalization of this damage with charged particle tracks over a broad range of clinically relevant beam energies. The technique uses novel fluorescence nuclear track detectors with fluorescence confocal laser scanning microscopy in the beam line to visualize particle track traversals within the subcellular compartments of live cells within seconds after injury. METHODS AND MATERIALS: We designed and built a portable fluorescence confocal laser scanning microscope for use in the beam path, coated fluorescence nuclear track detectors with fluorescent-tagged live cells (HT1080 expressing enhanced green fluorescent protein tagged to XRCC1, a single-strand break repair protein), placed the entire assembly into a proton therapy beam line, and irradiated the cells with a fluence of ∼1 × 10(6) protons/cm(2). RESULTS: We successfully obtained confocal images of proton tracks and foci of DNA single-strand breaks immediately after irradiation. CONCLUSIONS: This technique represents an innovative method for analyzing biological responses in any HT beam line at energies and dose rates relevant to therapy. It allows precise determination of the number of tracks traversing a subcellular compartment and monitoring the cellular damage therein, and has the potential to measure the linear energy transfer of each track from therapeutic beams.


Assuntos
Dano ao DNA/fisiologia , DNA de Neoplasias/efeitos da radiação , Transferência Linear de Energia/genética , Microscopia Confocal/métodos , Neoplasias Experimentais/radioterapia , Imagem com Lapso de Tempo/métodos , Linhagem Celular Tumoral , Rastreamento de Células/métodos , DNA de Neoplasias/ultraestrutura , Humanos , Transferência Linear de Energia/fisiologia , Transferência Linear de Energia/efeitos da radiação , Microscopia de Fluorescência/métodos , Neoplasias Experimentais/genética , Terapia com Prótons/métodos , Prótons
2.
Med Phys ; 43(5): 2485, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27147359

RESUMO

PURPOSE: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. METHODS: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared with LET spectra. RESULTS: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. CONCLUSIONS: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments.


Assuntos
Fluorescência , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Prótons , Radiometria/instrumentação , Radiometria/métodos , Simulação por Computador , Transferência de Energia , Imageamento Tridimensional , Método de Monte Carlo , Terapia com Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA