Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Oncol (Dordr) ; 46(6): 1659-1673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37318751

RESUMO

BACKGROUND: Recent studies have uncovered the near-ubiquitous presence of microbes in solid tumors of diverse origins. Previous literature has shown the impact of specific bacterial species on the progression of cancer. We propose that local microbial dysbiosis enables certain cancer phenotypes through provisioning of essential metabolites directly to tumor cells. METHODS: 16S rDNA sequencing of 75 patient lung samples revealed the lung tumor microbiome specifically enriched for bacteria capable of producing methionine. Wild-type (WT) and methionine auxotrophic (metA mutant) E. coli cells were used to condition cell culture media and the proliferation of lung adenocarcinoma (LUAD) cells were measured using SYTO60 staining. Further, colony forming assay, Annexin V Staining, BrdU, AlamarBlue, western blot, qPCR, LINE microarray and subcutaneous injection with methionine modulated feed were used to analyze cellular proliferation, cell-cycle, cell death, methylation potential, and xenograft formation under methionine restriction. Moreover, C14-labeled glucose was used to illustrate the interplay between tumor cells and bacteria. RESULTS/DISCUSSION: Our results show bacteria found locally within the tumor microenvironment are enriched for methionine synthetic pathways, while having reduced S-adenosylmethionine metabolizing pathways. As methionine is one of nine essential amino acids that mammals are unable to synthesize de novo, we investigated a potentially novel function for the microbiome, supplying essential nutrients, such as methionine, to cancer cells. We demonstrate that LUAD cells can utilize methionine generated by bacteria to rescue phenotypes that would otherwise be inhibited due to nutrient restriction. In addition to this, with WT and metA mutant E. coli, we saw a selective advantage for bacteria with an intact methionine synthetic pathway to survive under the conditions induced by LUAD cells. These results would suggest that there is a potential bi-directional cross-talk between the local microbiome and adjacent tumor cells. In this study, we focused on methionine as one of the critical molecules, but we also hypothesize that additional bacterial metabolites may also be utilized by LUAD. Indeed, our radiolabeling data suggest that other biomolecules are shared between cancer cells and bacteria. Thus, modulating the local microbiome may have an indirect effect on tumor development, progression, and metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Humanos , Metionina/genética , Metionina/metabolismo , Escherichia coli/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Racemetionina/metabolismo , Proliferação de Células/genética , S-Adenosilmetionina/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Mamíferos/metabolismo , Microambiente Tumoral
2.
J Contam Hydrol ; 247: 103988, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35303484

RESUMO

With growing global use of methanol as a fuel additive and extensive use in other industrial processes, there is the potential for unintended release and spills into soils and aquifers. In these subsurface systems it is likely that methanol will be readily biodegraded; however, degradation may lead to the production of by-products, most importantly methane possibly resulting in explosion hazards and volatile fatty acids (VFAs) causing aesthetic issues for groundwater. In this study, the formation of these potentially harmful by-products due to methanol biodegradation was investigated in natural sand and silt sediments using microcosms inoculated with neat methanol (100%) ranging in concentration from 100 to 100,000 ppm. To assess the rate of degradation and by-product formation, water and headspace samples were collected and analyzed for methanol, volatile fatty acids (VFAs, including acetic, butyric, and propionic acid), cation (metal) concentrations (Al, Ca, Fe, K, Mg, Mn and Na), microbial community structure and activity, headspace pressure, gas composition (CH4, CO2, O2 and N2), and compound specific isotopes. Methanol was completely biodegraded in sand and silt up to concentrations of 1000 ppm and 10,000 ppm, respectively. Degradation was initially aerobic, consuming oxygen (O2) and producing carbon dioxide (CO2). When O2 was depleted, the microcosms became anaerobic and a lag in methanol degradation occurred (ranging from 41 to 87 days). Following this lag, methanol was preferentially degraded to acetate, coupled with CO2 reduction. Microcosms with high methanol concentrations (10,000 ppm) were driven further down the redox ladder and exhibited fermentation, leading to concurrent acetate and methane (CH4) generation. In all cases acetate was an intermediate product, further degraded to the final products of CH4 and CO2. Carbonates present in the microcosm sediments helped buffer VFA acidification and replenished CO2. Methane generation in the anaerobic microcosms was short-lived, but temporarily reached high rates up to 13 mg kg-1 day-1. Under the conditions of these experiments, methanol degradation occurred rapidly, after initial lag periods, which were a function of methanol concentration and sediment type. Our experiment also showed that methanol degradation and associated methane production can occur in a stepwise fashion.


Assuntos
Água Subterrânea , Metanol , Acetatos , Dióxido de Carbono/análise , Ácidos Graxos Voláteis , Água Subterrânea/química , Metano/metabolismo , Areia
3.
PLoS Biol ; 20(1): e3001508, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986141

RESUMO

The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor.


Assuntos
Archaea , Elétrons , Anaerobiose , Archaea/genética , Archaea/metabolismo , Genômica , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Oxirredução , Filogenia , Sulfatos/metabolismo
4.
J Biol Chem ; 294(44): 16400-16415, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31530641

RESUMO

α-Linked GalNAc (α-GalNAc) is most notably found at the nonreducing terminus of the blood type-determining A-antigen and as the initial point of attachment to the peptide backbone in mucin-type O-glycans. However, despite their ubiquity in saccharolytic microbe-rich environments such as the human gut, relatively few α-N-acetylgalactosaminidases are known. Here, to discover and characterize novel microbial enzymes that hydrolyze α-GalNAc, we screened small-insert libraries containing metagenomic DNA from the human gut microbiome. Using a simple fluorogenic glycoside substrate, we identified and characterized a glycoside hydrolase 109 (GH109) that is active on blood type A-antigen, along with a new subfamily of glycoside hydrolase 31 (GH31) that specifically cleaves the initial α-GalNAc from mucin-type O-glycans. This represents a new activity in this GH family and a potentially useful new enzyme class for analysis or modification of O-glycans on protein or cell surfaces.


Assuntos
Glicosídeo Hidrolases/síntese química , alfa-N-Acetilgalactosaminidase/metabolismo , Microbioma Gastrointestinal/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Glicosídeos/metabolismo , Glicosilação , Hexosaminidases/metabolismo , Humanos , Mucinas/metabolismo , Peptídeos/metabolismo , Polissacarídeos/química , Proteínas/metabolismo , Especificidade por Substrato , alfa-N-Acetilgalactosaminidase/genética
5.
Sci Data ; 4: 170035, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28398290

RESUMO

Advances in high-throughput sequencing are reshaping how we perceive microbial communities inhabiting the human body, with implications for therapeutic interventions. Several large-scale datasets derived from hundreds of human microbiome samples sourced from multiple studies are now publicly available. However, idiosyncratic data processing methods between studies introduce systematic differences that confound comparative analyses. To overcome these challenges, we developed GutCyc, a compendium of environmental pathway genome databases (ePGDBs) constructed from 418 assembled human microbiome datasets using MetaPathways, enabling reproducible functional metagenomic annotation. We also generated metabolic network reconstructions for each metagenome using the Pathway Tools software, empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways encoded by the human gut microbiome. For the first time, GutCyc provides consistent annotations and metabolic pathway predictions, making possible comparative community analyses between health and disease states in inflammatory bowel disease, Crohn's disease, and type 2 diabetes. GutCyc data products are searchable online, or may be downloaded and explored locally using MetaPathways and Pathway Tools.


Assuntos
Bases de Dados Genéticas , Microbioma Gastrointestinal , Redes e Vias Metabólicas , Doença de Crohn/microbiologia , Diabetes Mellitus Tipo 2/microbiologia , Geografia Médica , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Metagenoma , Metagenômica
6.
Transpl Immunol ; 32(3): 144-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25843523

RESUMO

Humanized mice represent a valuable model system to study the development and functionality of the human immune system. In the RAG-hu mouse model highly immunodeficient Rag2(-/-)γc(-/-) mice are transplanted with human CD34(+) hematopoietic stem cells, resulting in human hematopoiesis and a predominant production of B and T lymphocytes. Human adaptive immune responses have been detected towards a variety of antigens in humanized mice but both cellular and humoral immune responses tend to be weak and sporadically detected. The underlying mechanisms for inconsistent responses are poorly understood. Here, we analyzed the kinetics of human B cell development and antibody production in RAG-hu mice to better understand the lack of effective antibody responses. We found that T cell levels in blood did not significantly change from 8 to 28 weeks post-engraftment, while B cells reached a peak at 14 weeks. Concentrations of 3 antibody classes (IgM, IgG, IgA) were found to be at levels about 0.1% or less of normal human levels, but human antibodies were still detected up to 32 weeks after engraftment. Human IgM was detected in 92.5% of animals while IgG and IgA were detected in about half of animals. We performed flow cytometric analysis of human B cells in bone marrow, spleen, and blood to examine the presence of precursor B cells, immature B cells, naïve B cells, and plasma B cells. We detected high levels of surface IgM(+) B cells (immature and naïve B cells) and low levels of plasma B cells in these organs, suggesting that B cells do not mature properly in this model. Low levels of human T cells in the spleen were observed, and we suggest that the lack of T cell help may explain poor B cell development and antibody responses. We conclude that human B cells that develop in humanized mice do not receive the signals necessary to undergo class-switching or to secrete antibody effectively, and we discuss strategies to potentially overcome these barriers.


Assuntos
Formação de Anticorpos , Linfócitos B/fisiologia , Transplante de Células-Tronco Hematopoéticas , Plasmócitos/fisiologia , Linfócitos T/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Quimera , Proteínas de Ligação a DNA/genética , Humanos , Switching de Imunoglobulina , Imunoglobulina M/sangue , Cadeias gama de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA