Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36611872

RESUMO

Amyloid-ß (Aß) deposition is an initiating factor in Alzheimer's disease (AD). Microglia are the brain immune cells that surround and phagocytose Aß plaques, but their phagocytic capacity declines in AD. This is in agreement with studies that associate AD risk loci with genes regulating the phagocytic function of immune cells. Immunotherapies are currently pursued as strategies against AD and there are increased efforts to understand the role of the immune system in ameliorating AD pathology. Here, we evaluated the effect of the Aß targeting ACI-24 vaccine in reducing AD pathology in an amyloidosis mouse model. ACI-24 vaccination elicited a robust and sustained antibody response in APPPS1 mice with an accompanying reduction of Aß plaque load, Aß plaque-associated ApoE and dystrophic neurites as compared to non-vaccinated controls. Furthermore, an increased number of NLRP3-positive plaque-associated microglia was observed following ACI-24 vaccination. In contrast to this local microglial activation at Aß plaques, we observed a more ramified morphology of Aß plaque-distant microglia compared to non-vaccinated controls. Accordingly, bulk transcriptomic analysis revealed a trend towards the reduced expression of several disease-associated microglia (DAM) signatures that is in line with the reduced Aß plaque load triggered by ACI-24 vaccination. Our study demonstrates that administration of the Aß targeting vaccine ACI-24 reduces AD pathology, suggesting its use as a safe and cost-effective AD therapeutic intervention.


Assuntos
Doença de Alzheimer , Amiloidose , Camundongos , Animais , Microglia/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Placa Amiloide/metabolismo , Fenótipo , Vacinação
2.
Front Neurol ; 12: 654850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054698

RESUMO

Purinergic signaling regulates neuronal and glial cell functions in the healthy CNS. In neurodegenerative diseases, purinergic signaling becomes dysregulated and can affect disease-associated phenotypes of glial cells. In this review, we discuss how cell-specific expression patterns of purinergic signaling components change in neurodegeneration and how dysregulated glial purinergic signaling and crosstalk may contribute to disease pathophysiology, thus bearing promising potential for the development of new therapeutical options for neurodegenerative diseases.

3.
Brain ; 142(11): 3636-3654, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599329

RESUMO

Accumulating data support the role of tau pathology in cognitive decline in ageing and Alzheimer's disease, but underlying mechanisms remain ill-defined. Interestingly, ageing and Alzheimer's disease have been associated with an abnormal upregulation of adenosine A2A receptor (A2AR), a fine tuner of synaptic plasticity. However, the link between A2AR signalling and tau pathology has remained largely unexplored. In the present study, we report for the first time a significant upregulation of A2AR in patients suffering from frontotemporal lobar degeneration with the MAPT P301L mutation. To model these alterations, we induced neuronal A2AR upregulation in a tauopathy mouse model (THY-Tau22) using a new conditional strain allowing forebrain overexpression of the receptor. We found that neuronal A2AR upregulation increases tau hyperphosphorylation, potentiating the onset of tau-induced memory deficits. This detrimental effect was linked to a singular microglial signature as revealed by RNA sequencing analysis. In particular, we found that A2AR overexpression in THY-Tau22 mice led to the hippocampal upregulation of C1q complement protein-also observed in patients with frontotemporal lobar degeneration-and correlated with the loss of glutamatergic synapses, likely underlying the observed memory deficits. These data reveal a key impact of overactive neuronal A2AR in the onset of synaptic loss in tauopathies, paving the way for new therapeutic approaches.


Assuntos
Complemento C1q/metabolismo , Neurônios/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Sinapses/patologia , Tauopatias/genética , Tauopatias/patologia , Animais , Autopsia , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Camundongos , Camundongos Transgênicos , Mutação , Aprendizagem Espacial , Tauopatias/psicologia , Proteínas tau/genética
4.
Glia ; 67(10): 1859-1872, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31231866

RESUMO

Microglia mediated responses to neuronal damage in the form of neuroinflammation is a common thread propagating neuropathology. In this study, we investigated the microglial alterations occurring as a result of sphingosine 1-phosphate (S1P) accumulation in neural cells. We evidenced increased microglial activation in the brains of neural S1P-lyase (SGPL1) ablated mice (SGPL1fl/fl/Nes ) as shown by an activated and deramified morphology and increased activation markers on microglia. In addition, an increase of pro-inflammatory cytokines in sorted and primary cultured microglia generated from SGPL1 deficient mice was noticed. Further, we assessed autophagy, one of the major mechanisms in the brain that keeps inflammation in check. Indeed, microglial inflammation was accompanied by defective microglial autophagy in SGPL1 ablated mice. Rescuing autophagy by treatment with rapamycin was sufficient to decrease interleukin 6 (IL-6) but not tumor necrosis factor (TNF) secretion in cultured microglia. Rapamycin mediated decrease of IL-6 secretion suggests a particular mechanistic target of rapamycin (mTOR)-IL-6 link and appeared to be microglia specific. Using pharmacological inhibitors of the major receptors of S1P expressed in the microglia, we identified S1P receptor 2 (S1PR2) as the mediator of both impaired autophagy and proinflammatory effects. In line with these results, the addition of exogenous S1P to BV2 microglial cells showed similar effects as those observed in the genetic knock out of SGPL1 in the neural cells. In summary, we show a novel role of the S1P-S1PR2 axis in the microglia of mice with neural-targeted SGPL1 ablation and in BV2 microglial cell line exogenously treated with S1P.


Assuntos
Aldeído Liases/metabolismo , Autofagia/fisiologia , Inflamação/metabolismo , Microglia/metabolismo , Aldeído Liases/antagonistas & inibidores , Aldeído Liases/genética , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Inflamação/patologia , Interleucina-6/metabolismo , Camundongos Transgênicos , Microglia/patologia , Receptores de Esfingosina-1-Fosfato/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Glia ; 66(10): 2246-2261, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30277599

RESUMO

Chemokines are important signaling molecules in the immune and nervous system. Using a fluorescence reporter mouse model, we demonstrate that the chemokine CCL17, a ligand of the chemokine receptor CCR4, is produced in the murine brain, particularly in a subset of hippocampal CA1 neurons. We found that basal expression of Ccl17 in hippocampal neurons was strongly enhanced by peripheral challenge with lipopolysaccharide (LPS). LPS-mediated induction of Ccl17 in the hippocampus was dependent on local tumor necrosis factor (TNF) signaling, whereas upregulation of Ccl22 required granulocyte-macrophage colony-stimulating factor (GM-CSF). CCL17 deficiency resulted in a diminished microglia density under homeostatic and inflammatory conditions. Further, microglia from naïve Ccl17-deficient mice possessed a reduced cellular volume and a more polarized process tree as assessed by computer-assisted imaging analysis. Regarding the overall branching, cell surface area, and total tree length, the morphology of microglia from naïve Ccl17-deficient mice resembled that of microglia from wild-type mice after LPS stimulation. In line, electrophysiological recordings indicated that CCL17 downmodulates basal synaptic transmission at CA3-CA1 Schaffer collaterals in acute slices from naïve but not LPS-treated animals. Taken together, our data identify CCL17 as a homeostatic and inducible neuromodulatory chemokine affecting the presence and morphology of microglia and synaptic transmission in the hippocampus.


Assuntos
Quimiocina CCL17/metabolismo , Hipocampo/imunologia , Neuroimunomodulação/fisiologia , Neurônios/imunologia , Animais , Quimiocina CCL17/genética , Quimiocina CCL22/metabolismo , Feminino , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/patologia , Homeostase/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/imunologia , Microglia/patologia , Monócitos/imunologia , Monócitos/patologia , Neurônios/patologia , Receptores CCR4/metabolismo , Transmissão Sináptica/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Front Mol Neurosci ; 11: 235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050407

RESUMO

Consumption of caffeine, a non-selective adenosine A2A receptor (A2AR) antagonist, reduces the risk of developing Alzheimer's disease (AD) and mitigates both amyloid and Tau lesions in transgenic mouse models of the disease. While short-term treatment with A2AR antagonists have been shown to alleviate cognitive deficits in mouse models of amyloidogenesis, impact of a chronic and long-term treatment on the development of amyloid burden, associated neuroinflammation and memory deficits has never been assessed. In the present study, we have evaluated the effect of a 6-month treatment of APPsw/PS1dE9 mice with the potent and selective A2AR antagonist MSX-3 from 3 to 9-10 months of age. At completion of the treatment, we found that the MSX-3 treatment prevented the development of memory deficits in APP/PS1dE9 mice, without significantly altering hippocampal and cortical gene expressions. Interestingly, MSX-3 treatment led to a significant decrease of Aß1-42 levels in the cortex of APP/PS1dE9 animals, while Aß1-40 increased, thereby strongly affecting the Aß1-42/Aß1-40 ratio. Together, these data support the idea that A2AR blockade is of therapeutic value for AD.

7.
J Exp Med ; 215(6): 1649-1663, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29724785

RESUMO

Astrocytic hyperactivity is an important contributor to neuronal-glial network dysfunction in Alzheimer's disease (AD). We have previously shown that astrocyte hyperactivity is mediated by signaling through the P2Y1 purinoreceptor (P2Y1R) pathway. Using the APPPS1 mouse model of AD, we here find that chronic intracerebroventricular infusion of P2Y1R inhibitors normalizes astroglial and neuronal network dysfunction, as measured by in vivo two-photon microscopy, augments structural synaptic integrity, and preserves hippocampal long-term potentiation. These effects occur independently from ß-amyloid metabolism or plaque burden but are associated with a higher morphological complexity of periplaque reactive astrocytes, as well as reduced dystrophic neurite burden and greater plaque compaction. Importantly, APPPS1 mice chronically treated with P2Y1R antagonists, as well as APPPS1 mice carrying an astrocyte-specific genetic deletion (Ip3r2-/-) of signaling pathways downstream of P2Y1R activation, are protected from the decline of spatial learning and memory. In summary, our study establishes the restoration of network homoeostasis by P2Y1R inhibition as a novel treatment target in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Cognição , Rede Nervosa/fisiopatologia , Antagonistas do Receptor Purinérgico P2Y/uso terapêutico , Receptores Purinérgicos P2Y1/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/uso terapêutico , Doença de Alzheimer/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/patologia , Humanos , Memória/efeitos dos fármacos , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Placa Amiloide/metabolismo , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
8.
Eur J Immunol ; 40(11): 3150-60, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20957750

RESUMO

There is limited insight into the mechanisms involved in the counterregulation of TLR. Given the important role of TLR3/TIR domain-containing adaptor-inducing IFN-ß (TRIF)-dependent signalling in innate immunity, novel insights into its modulation is of significance in the context of many physiological and pathological processes. Herein, we sought to perform analysis to definitively assign a mechanistic role for MyD88 adaptor-like (Mal), an activator of TLR2/4 signalling, in the negative regulation of TLR3/TRIF signalling. Biochemical and functional analysis demonstrates that Mal negatively regulates TLR3, but not TLR4, mediated IFN-ß production. Co-immunoprecipitation experiments demonstrate that Mal associates with IRF7 (IRF, IFN regulatory factor), not IRF3, and Mal specifically blocks IRF7 activation. In doing so, Mal impedes TLR3 ligand-induced IFN-ß induction. Interestingly, Mal does not affect the induction of IL-6 and TNF-α upon TLR3 ligand engagement. Together, these data show that the TLR adaptor Mal interacts with IRF7 and, in doing so, impairs IFN-ß induction through the positive regulatory domains I-III enhancer element of the IFN-ß gene following poly(I:C) stimulation. Our findings offer a new mechanistic insight into TLR3/TRIF signalling through a hitherto unknown mechanism whereby Mal inhibits poly(I:C)-induced IRF7 activation and concomitant IFN-ß production. Thus, Mal is essential in restricting TLR3 signalling thereby protecting the host from unwanted immunopathologies associated with excessive IFN-ß production.


Assuntos
Interferon beta/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/imunologia , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Indutores de Interferon/farmacologia , Fator Regulador 7 de Interferon/imunologia , Fator Regulador 7 de Interferon/metabolismo , Interferon beta/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Proteínas de Membrana Transportadoras/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Knockout , Proteínas da Mielina/imunologia , Proteínas da Mielina/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Fator 88 de Diferenciação Mieloide/metabolismo , Poli I-C/farmacologia , Proteolipídeos/imunologia , Proteolipídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
9.
J Immunol ; 185(7): 4261-71, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20802145

RESUMO

TLRs are critical pattern recognition receptors that recognize bacterial and viral pathogen-associated molecular patterns leading to innate and adaptive immune responses. TLRs signal via homotypic interactions between their cytoplasmic Toll/IL-1R (TIR) domains and TIR domain-containing adaptor proteins. Over the course of evolution, viruses have developed various immune evasion strategies, one of which involves inhibiting TLR signaling pathways to avoid immune detection. Thus, vaccinia virus encodes the A46 protein, which binds to multiple TIR-domain containing proteins, ultimately preventing TLRs from signaling. We have identified an 11-aa-long peptide from A46 (termed viral inhibitor peptide of TLR4, or VIPER), which, when fused to a cell-penetrating delivery sequence, potently inhibits TLR4-mediated responses. VIPER was TLR4 specific, being inert toward other TLR pathways, and was active in murine and human cells and in vivo, where it inhibited LPS-induced IL-12p40 secretion. VIPER also prevented TLR4-mediated MAPK and transcription factor activation, suggesting it acted close to the TLR4 complex. Indeed, VIPER directly interacted with the TLR4 adaptor proteins MyD88 adaptor-like (Mal) and TRIF-related adaptor molecule (TRAM). Viral proteins target host proteins using evolutionary optimized binding surfaces. Thus, VIPER possibly represents a surface domain of A46 that specifically inhibits TLR4 by masking critical binding sites on Mal and TRAM. Apart from its potential therapeutic and experimental use in suppressing TLR4 function, identification of VIPER's specific binding sites on TRAM and Mal may reveal novel therapeutic target sites. Overall, we demonstrate for the first time disruption of a specific TLR signaling pathway by a short virally derived peptide.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1/metabolismo , Receptor 4 Toll-Like/metabolismo , Vaccinia virus/patogenicidade , Proteínas Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Linhagem Celular , Feminino , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Immunoblotting , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos , Estrutura Quaternária de Proteína , Receptores de Interleucina-1/imunologia , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/imunologia , Proteínas Virais/química , Proteínas Virais/genética
10.
Nat Immunol ; 9(8): 847-56, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18604214

RESUMO

Inhalation of silica crystals causes inflammation in the alveolar space. Prolonged exposure to silica can lead to the development of silicosis, an irreversible, fibrotic pulmonary disease. The mechanisms by which silica and other crystals activate immune cells are not well understood. Here we demonstrate that silica and aluminum salt crystals activated inflammasomes formed by the cytoplasmic receptor NALP3. NALP3 activation required phagocytosis of crystals, and this uptake subsequently led to lysosomal damage and rupture. 'Sterile' lysosomal damage (without crystals) also induced NALP3 activation, and inhibition of either phagosomal acidification or cathepsin B activity impaired NALP3 activation. Our results indicate that the NALP3 inflammasome senses lysosomal damage as an endogenous 'danger' signal.


Assuntos
Mediadores da Inflamação/fisiologia , Inflamação/imunologia , Inflamação/metabolismo , Silicose/imunologia , Silicose/patologia , Compostos de Alumínio/metabolismo , Animais , Proteínas de Transporte , Inflamação/induzido quimicamente , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Dióxido de Silício/metabolismo
11.
J Immunol ; 178(10): 6476-81, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17475877

RESUMO

Innate immunity relies on pattern recognition receptors to detect the presence of infectious pathogens. In the case of Gram-positive bacteria, binding of bacterial lipopeptides to TLR2 is currently regarded as an important mechanism. In the present study, we used the synthetic bacterial lipopeptide Pam3CysSK4, a selective TLR2 agonist, to induce meningeal inflammation in rodents. In a 6-h rat model, intrathecal application of Pam3CysSK4 caused influx of leukocytes into the cerebrospinal fluid (CSF) and induced a marked increase of regional cerebral blood flow and intracranial pressure. In wild-type mice, we observed CSF pleocytosis and an increased number of apoptotic neurons in the dentate gyrus 24 h after intrathecal challenge. Inflammation and associated neuronal loss were absent in TLR2 knockout mice. In purified neurons, cytotoxicity of Pam3CysSK4 itself was not observed. Exposure of microglia to Pam3CysSK4 induced neurotoxic properties in the supernatant of wild-type, but not TLR2-deficient microglia. We conclude that TLR2-mediated signaling is sufficient to induce the host-dependent key features of acute bacterial meningitis. Therefore, synthetic lipopeptides are a highly specific tool to study mechanisms of TLR2-driven neurodegeneration in vivo.


Assuntos
Meningites Bacterianas/imunologia , Meningites Bacterianas/patologia , Receptor 2 Toll-Like/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Injeções Espinhais , Lipopeptídeos , Masculino , Meningites Bacterianas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/imunologia , Neuroglia/patologia , Neurônios/imunologia , Neurônios/patologia , Peptídeos/administração & dosagem , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/metabolismo , Infecções Pneumocócicas/patologia , Ratos , Ratos Wistar , Streptococcus pneumoniae/imunologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA