Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Stem Cell Res Ther ; 15(1): 132, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702808

RESUMO

BACKGROUND: Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS: Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS: We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION: Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.


Assuntos
Apoptose , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Rim , Monócitos , Organoides , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Organoides/citologia , Organoides/metabolismo , Organoides/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Rim/citologia , Rim/metabolismo , Monócitos/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Sirolimo/farmacologia , Autofagia/efeitos dos fármacos , Técnicas de Cocultura/métodos , Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos
2.
Front Immunol ; 15: 1368040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562925

RESUMO

Background: Excessive inflammation, hemolysis, and accumulation of labile heme play an essential role in the pathophysiology of multi-organ dysfunction syndrome (MODS) in sepsis. Alpha1-antitrypsin (AAT), an acute phase protein with heme binding capacity, is one of the essential modulators of host responses to inflammation. In this study, we evaluate the putative protective effect of AAT against MODS and mortality in a mouse model of polymicrobial abdominal sepsis. Methods: Polymicrobial abdominal sepsis was induced in C57BL/6N mice by cecal ligation and puncture (CLP). Immediately after CLP surgery, mice were treated intraperitoneally with three different forms of human AAT-plasma-derived native (nAAT), oxidized nAAT (oxAAT), or recombinant AAT (recAAT)-or were injected with vehicle. Sham-operated mice served as controls. Mouse survival, bacterial load, kidney and liver function, immune cell profiles, cytokines/chemokines, and free (labile) heme levels were assessed. In parallel, in vitro experiments were carried out with resident peritoneal macrophages (MPMΦ) and mouse peritoneal mesothelial cells (MPMC). Results: All AAT preparations used reduced mortality in septic mice. Treatment with AAT significantly reduced plasma lactate dehydrogenase and s-creatinine levels, vascular leakage, and systemic inflammation. Specifically, AAT reduced intraperitoneal accumulation of free heme, production of cytokines/chemokines, and neutrophil infiltration into the peritoneal cavity compared to septic mice not treated with AAT. In vitro experiments performed using MPMC and primary MPMΦ confirmed that AAT not only significantly decreases lipopolysaccharide (LPS)-induced pro-inflammatory cell activation but also prevents the enhancement of cellular responses to LPS by free heme. In addition, AAT inhibits cell death caused by free heme in vitro. Conclusion: Data from the septic CLP mouse model suggest that intraperitoneal AAT treatment alone is sufficient to improve sepsis-associated organ dysfunctions, preserve endothelial barrier function, and reduce mortality, likely by preventing hyper-inflammatory responses and by neutralizing free heme.


Assuntos
Doenças Transmissíveis , Sepse , Humanos , Camundongos , Animais , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Quimiocinas , Fatores Imunológicos
3.
Diabetes Metab Res Rev ; 40(3): e3753, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050450

RESUMO

AIMS: Inflammation and angiogenesis play an important role in the development of early diabetic kidney disease. We investigated the association of soluble Tumour Necrosis Factor Receptor 1 (sTNF-R1), sTNF-R2 and endostatin with new onset microalbuminuria in normoalbuminuric patients with diabetes mellitus type 2. METHODS: We conducted a case control study to assess serum levels of sTNF-R1, sTNF-R2 and endostatin in 169 patients with new onset microalbuminuria and in 188 matched normoalbuminuric, diabetic controls. Baseline serum samples from participants of the ROADMAP (Randomized Olmesartan and Diabetes Microalbuminuria Prevention) and observational follow-up (ROADMAP-OFU) studies were used. RESULTS: Endostatin and sTNF-R1 but not sTNF-R2 were increased at baseline in patients with future microalbuminuria. In the multivariate analysis, each log2 increment in endostatin levels was associated with an increase of only 6% in the risk of development of microalbuminuria (adjusted HR (95% CI) 1.006 (1.001-1011). sTNF-R1 and sTNF-R2 levels were conversely associated with microalbuminuria, but the results did not reach statistical significance. The respective adjusted HRs (95% CI) were 1.305 (0.928-1.774) and 0.874 (0.711-1.074). CONCLUSIONS: sTNF-R1 and sTNF-R2 failed to predict the occurrence of microalbuminuria in normoalbuminuric patients with type 2 diabetes. Likewise, the utility of endostatin in predicting new onset proteinuria is limited.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Receptores Tipo II do Fator de Necrose Tumoral , Endostatinas , Diabetes Mellitus Tipo 2/complicações , Estudos de Casos e Controles , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/complicações
4.
J Leukoc Biol ; 115(3): 573-582, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38038378

RESUMO

CD115, the receptor for colony stimulating factor 1, is essential for survival and differentiation of monocytes and macrophages and is therefore frequently used to define monocyte subsets and their progenitors in immunological assays. However, CD115 surface expression and detection by flow cytometry is greatly influenced by cell isolation and processing methods, organ source, and disease context. In a systematic analysis of murine monocytes, we define experimental conditions that preserve or limit CD115 surface expression and staining by flow cytometry. We also find that, independent of conditions, CD115 surface levels are consistently lower in Ly6Clo monocytes than in Ly6Chi monocytes, with the exception of Ly6Clo monocytes in the bone marrow. Furthermore, in contrast to IL-34, the presence of colony stimulating factor 1 impairs CD115 antibody staining in a dose-dependent manner, which, in a model of ischemic kidney injury with elevated levels of colony stimulating factor 1, influenced quantification of kidney monocytes. Thus, staining and experimental conditions affect quantitative and qualitative analysis of monocytes and may influence experimental conclusions.


Assuntos
Monócitos , Receptor de Fator Estimulador de Colônias de Macrófagos , Camundongos , Animais , Monócitos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Citometria de Fluxo , Macrófagos/metabolismo , Diferenciação Celular
5.
Clin Transl Sci ; 16(12): 2729-2743, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37899696

RESUMO

Free heme is released from hemoproteins during hemolysis or ischemia reperfusion injury and can be pro-inflammatory. Most studies on nephrotoxicity of hemolysis-derived proteins focus on free hemoglobin (fHb) with heme as a prosthetic group. Measurement of heme in its free, non-protein bound, form is challenging and not commonly used in clinical routine diagnostics. In contrast to fHb, the role of free heme in acute kidney injury (AKI) after cardiopulmonary bypass (CPB) surgery is unknown. Using an apo-horseradish peroxidase-based assay, we identified free heme during CPB surgery as predictor of AKI in patients undergoing cardiac valve replacement (n = 37). Free heme levels during CPB surgery correlated with depletion of hemopexin (Hx), a heme scavenger-protein. In mice, the impact of high levels of circulating free heme on the development of AKI following transient renal ischemia and the therapeutic potential of Hx were investigated. C57BL/6 mice were subjected to bilateral renal ischemia/reperfusion injury for 15 min which did not cause AKI. However, additional administration of free heme in this model promoted overt AKI with reduced renal function, increased renal inflammation, and reduced renal perfusion on functional magnetic resonance imaging. Hx treatment attenuated AKI. Free heme administration to sham operated control mice did not cause AKI. In conclusion, free heme is a predictor of AKI in CPB surgery patients and promotes AKI in transient renal ischemia. Depletion of Hx in CPB surgery patients and attenuation of AKI by Hx in the in vivo model encourage further research on Hx therapy in patients with increased free heme levels during CPB surgery.


Assuntos
Injúria Renal Aguda , Hemopexina , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Ponte Cardiopulmonar/efeitos adversos , Heme , Hemoglobinas/metabolismo , Hemólise , Hemopexina/química , Hemopexina/metabolismo , Isquemia/complicações , Rim/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/etiologia
6.
Front Immunol ; 14: 1240327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691936

RESUMO

Ischemia causes an inflammatory response featuring monocyte-derived macrophages (MF) involved in angiogenesis and tissue repair. Angiogenesis and ischemic macrophage differentiation are regulated by Notch signaling via Notch ligand Delta-like 1 (Dll1). Colony stimulating factor 1 (CSF-1) is an essential MF lineage factor, but its role in ischemic macrophage development and the interaction with Notch signaling is so far unclear. Using a mouse model of hind limb ischemia with CSF-1 inhibitor studies and Dll1 heterozygous mice we show that CSF-1 is induced in the ischemic niche by a subpopulation of stromal cells expressing podoplanin, which was paralleled by the development of ischemic macrophages. Inhibition of CSF-1 signaling with small molecules or blocking antibodies impaired macrophage differentiation but prolonged the inflammatory response, resulting in impaired perfusion recovery and tissue regeneration. Yet, despite high levels of CSF-1, macrophage maturation and perfusion recovery were impaired in mice with Dll1 haploinsufficiency, while inflammation was exaggerated. In vitro, CSF-1 was not sufficient to induce full MF differentiation from donor monocytes in the absence of recombinant DLL1, while the presence of DLL1 in a dose-dependent manner stimulated MF differentiation in combination with CSF-1. Thus, CSF-1 is an ischemic niche factor that cooperates with Notch signaling in a non-redundant fashion to instruct macrophage cell fate and maturation, which is required for ischemic perfusion recovery and tissue repair.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Doenças Vasculares Periféricas , Receptores Notch , Isquemia , Macrófagos , Monócitos , Animais , Camundongos
7.
Kidney Int Rep ; 8(2): 341-356, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36815108

RESUMO

Introduction: Macrophages and monocytes are main players in innate immunity. The relevance of mononuclear phagocyte infiltrates on clinical outcomes remains to be determined in native kidney diseases. Methods: Our cross-sectional study included 324 patients with diagnostic renal biopsies comprising 17 disease entities and normal renal tissues for comparison. All samples were stained for CD68+ macrophages. Selected groups were further subtyped for CD14+ monocytes and CD163+ alternatively activated macrophages. Using precise pixel-based digital measurements, we quantified cell densities as positively stained areas in renal cortex and medulla as well as whole renal tissue. Laboratory and clinical data of all cases at the time of biopsy and additional follow-up data in 158 cases were accessible. Results: Biopsies with renal disease consistently revealed higher CD68+-macrophage densities and CD163+-macrophage densities in cortex and medulla compared to controls. High macrophage densities correlated with impaired renal function at biopsy and at follow-up in all diseases and in diseases analyzed separately. High cortical CD68+-macrophage densities preceded shorter renal survival, defined as requirement of permanent dialysis. CD14+ monocyte densities showed no difference compared to controls and did not correlate with renal function. Conclusion: Precise quantification of macrophage densities in renal biopsies may contribute to risk stratification to identify patients with high risk for end-stage renal disease (ESRD) and might be a promising therapeutic target in renal disease.

8.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362059

RESUMO

Cell-free hemoglobin (CFH), a pro-oxidant and cytotoxic compound that is released in hemolysis, has been associated with nephrotoxicity. Lung transplantation (LuTx) is a clinical condition with a high incidence of acute kidney injury (AKI). In this study, we investigated the plasma levels of CFH and haptoglobin, a CFH-binding serum protein, in prospectively enrolled LuTx patients (n = 20) with and without AKI. LuTx patients with postoperative AKI had higher CFH plasma levels at the end of surgery compared with no-AKI patients, and CFH correlated with serum creatinine at 48 h. Moreover, CFH levels inversely correlated with haptoglobin levels, which were significantly reduced at the end of surgery in LuTx patients with AKI. Because multiple other factors can contribute to AKI development in the complex clinical setting of LuTx, we next investigated the role of exogenous CFH administration in a mouse model of mild bilateral renal ischemia reperfusion injury (IRI). Exogenous administration of CFH after reperfusion caused overt AKI with creatinine increase, tubular injury, and enhanced markers of renal inflammation compared with vehicle-treated animals. In conclusion, CFH is a possible factor contributing to postoperative AKI after LuTx and promotes AKI in an experimental model of mild transient renal ischemia. Targeting CFH might be a therapeutic option to prevent AKI after LuTx.


Assuntos
Injúria Renal Aguda , Hemoglobinas , Transplante de Pulmão , Traumatismo por Reperfusão , Animais , Camundongos , Injúria Renal Aguda/diagnóstico , Creatinina/química , Haptoglobinas/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Transplante de Pulmão/efeitos adversos , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/metabolismo
9.
Herz ; 47(5): 401-409, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36094559

RESUMO

Diabetic kidney disease (DKD) develops in almost half of all patients with diabetes and is the most common cause of chronic kidney disease (CKD) worldwide. Despite the high risk of chronic renal failure in these patients, only few therapeutic strategies are available. The use of renin-angiotensin system blockers to reduce the incidence of kidney failure in patients with DKD was established years ago and remains the hallmark of therapy. The past 2 years have seen a dramatic change in our therapeutic arsenal for CKD. Sodium-glucose co-transporter­2 inhibitors (SGLT2s) have been successfully introduced for the treatment of CKD. A further addition is a novel compound antagonizing the activation of the mineralocorticoid receptor: finerenone. Finerenone reduces albuminuria and surrogate markers of cardiovascular disease in patients who are already on optimal therapy. In the past, treatment with other mineralocorticoid receptor antagonists was hampered by a significantly increased risk of hyperkalemia. Finerenone had a much smaller effect on hyperkalemia. Together with a reduced effect on blood pressure and no signs of gynecomastia, this therapeutic strategy had a more specific anti-inflammatory effect and a smaller effect on the volume/electrolyte axis. In the FIDELIO-DKD study comparing the actions of the non-steroidal mineralocorticoid receptor antagonist finerenone with placebo, finerenone reduced the progression of DKD and the incidence of cardiovascular events, with a relatively safe adverse event profile. In this article, we summarize the available evidence on the cardioprotective and nephroprotective effects of finerenone and analyze the molecular mechanisms involved. In addition, we discuss the potential future role of mineralocorticoid receptor inhibition in the treatment of patients with diabetic CKD.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Hiperpotassemia , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Simportadores , Anti-Inflamatórios , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Glucose/uso terapêutico , Humanos , Hiperpotassemia/induzido quimicamente , Hiperpotassemia/tratamento farmacológico , Hiperpotassemia/epidemiologia , Masculino , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/uso terapêutico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Sódio , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Simportadores/uso terapêutico
10.
Front Med (Lausanne) ; 9: 905464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646951

RESUMO

A kidney transplant is often the best treatment for end-stage renal disease. Although immunosuppressive therapy sharply reduces the occurrence of acute allograft rejection (AR), it remains the main cause of allograft dysfunction. We aimed to identify effective biomarkers for AR instead of invasive kidney transplant biopsy. We integrated the results of several proteomics studies related to AR and utilized public data sources. Gene ontology (GO) and pathway analyses were used to identify important biological processes and pathways. The performance of the identified proteins was validated using several public gene expression omnibus (GEO) datasets. Samples that performed well were selected for further validation through RNA sequencing of peripheral blood mononuclear cells of patients with AR (n = 16) and non-rejection (n = 19) from our medical center. A total of 25 differentially expressed proteins (DEPs) overlapped in proteomic studies of urine and blood samples. GO analysis showed that the DEPs were mainly involved in the immune system and blood coagulation. Pathway analysis showed that the complement and coagulation cascade pathways were well enriched. We found that immunoglobulin heavy constant alpha 1 (IGHA1) and immunoglobulin κ constant (IGKC) showed good performance in distinguishing AR from non-rejection groups validated with several GEO datasets. Through RNA sequencing, the combination of IGHA1, IGKC, glomerular filtration rate, and donor age showed good performance in the diagnosis of AR with ROC AUC 91.4% (95% CI: 82-100%). Our findings may contribute to the discovery of potential biomarkers for AR monitoring.

11.
Biomedicines ; 10(5)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35625934

RESUMO

Nephrotoxic drugs can cause acute kidney injury (AKI) and analgesic nephropathy. Diclofenac is potentially nephrotoxic and frequently prescribed for pain control. In this study, we investigated the effects of single and repetitive oral doses of diclofenac in the setting of pre-existing subclinical AKI on the further course of AKI and on long-term renal consequences. Unilateral renal ischemia-reperfusion injury (IRI) for 15 min was performed in male CD1 mice to induce subclinical AKI. Immediately after surgery, single oral doses (100 mg or 200 mg) of diclofenac were administered. In a separate experimental series, repetitive treatment with 100 mg diclofenac over three days was performed after IRI and sham surgery. Renal morphology and pro-fibrotic markers were investigated 24 h and two weeks after the single dose and three days after the repetitive dose of diclofenac treatment using histology, immunofluorescence, and qPCR. Renal function was studied in a bilateral renal IRI model. A single oral dose of 200 mg, but not 100 mg, of diclofenac after IRI aggravated acute tubular injury after 24 h and caused interstitial fibrosis and tubular atrophy two weeks later. Repetitive treatment with 100 mg diclofenac over three days aggravated renal injury and caused upregulation of the pro-fibrotic marker fibronectin in the setting of subclinical AKI, but not in sham control kidneys. In conclusion, diclofenac aggravated renal injury in pre-existing subclinical AKI in a dose and time-dependent manner and already a single dose can cause progression to chronic kidney disease (CKD) in this model.

12.
Eur J Immunol ; 52(8): 1258-1272, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35527392

RESUMO

Renal immune cells serve as sentinels against ascending bacteria but also promote detrimental inflammation. The kidney medulla is characterized by extreme electrolyte concentrations. We here address how its main osmolytes, NaCl and urea, regulate tubular cell cytokine expression and monocyte chemotaxis. In the healthy human kidney, more monocytes were detected in medulla than cortex. The monocyte gradient was attenuated in patients with medullary NaCl depletion by loop diuretic therapy and in the nephrotic syndrome. Renal tubular epithelial cell gene expression responded similarly to NaCl and tonicity control mannitol, but not urea. NaCl significantly upregulated chemotactic cytokines, most markedly CCL26, CCL2, and CSF1. This induction was inhibited by the ROS scavenger n-acetylcysteine. In contrast, urea, the main medullary osmolyte in catabolism, dampened tubular epithelial CCL26 and CSF1 expression. Renal medullary chemokine and monocyte marker expression decreased in catabolic mice. NaCl-, but not urea-stimulated tubular epithelium or CCL2 and CCL26, promoted human classical monocyte migration. CCL26 improved bactericidal function. In the human kidney medulla, monocyte densities correlated with tubular CCL26 protein abundance. In summary, medullary-range NaCl, but not urea, promotes tubular cytokine expression and monocyte recruitment. This may contribute to the pyelonephritis vulnerability in catabolism but can possibly be harnessed against pathologic inflammation.


Assuntos
Medula Renal , Cloreto de Sódio , Animais , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Medula Renal/metabolismo , Camundongos , Monócitos/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Ureia/metabolismo , Ureia/farmacologia
13.
Am J Transplant ; 22(9): 2158-2168, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35607817

RESUMO

The accumulation of senescent cells is an important contributor to kidney aging, chronic renal disease, and poor outcome after kidney transplantation. Approaches to eliminate senescent cells with senolytic compounds have been proposed as novel strategies to improve marginal organs. While most existing senolytics induce senescent cell clearance by apoptosis, we observed that ferroptosis, an iron-catalyzed subtype of regulated necrosis, might serve as an alternative way to ablate senescent cells. We found that murine kidney tubular epithelial cells became sensitized to ferroptosis when turning senescent. This was linked to increased expression of pro-ferroptotic lipoxygenase-5 and reduced expression of anti-ferroptotic glutathione peroxidase 4 (GPX4). In tissue slice cultures from aged kidneys low dose application of the ferroptosis-inducer RSL3 selectively eliminated senescent cells while leaving healthy tubular cells unaffected. Similar results were seen in a transplantation model, in which RSL3 reduced the senescent cell burden of aged donor kidneys and caused a reduction of damage and inflammatory cell infiltration during the early post-transplantation period. In summary, these data reveal an increased susceptibility of senescent tubular cells to ferroptosis with the potential to be exploited for selective reduction of renal senescence in aged kidney transplants.


Assuntos
Ferroptose , Envelhecimento , Animais , Apoptose , Células Epiteliais , Camundongos
14.
Front Immunol ; 13: 846695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432371

RESUMO

Background: Acute rejection (AR) in kidney transplantation is an established risk factor that reduces the survival rate of allografts. Despite standard immunosuppression, molecules with regulatory control in the immune pathway of AR can be used as important targets for therapeutic operations to prevent rejection. Methods: We downloaded the microarray data of 15 AR patients and 37 non-acute rejection (NAR) patients from Gene Expression Omnibus (GEO). Gene network was constructed, and genes were classified into different modules using weighted gene co-expression network analysis (WGCNA). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cytoscape were applied for the hub genes in the most related module to AR. Different cell types were explored by xCell online database and single-cell RNA sequencing. We also validated the SLAMF8 and TLR4 levels in Raw264.7 and human kidney tissues of TCMR. Results: A total of 1,561 differentially expressed genes were filtered. WGCNA was constructed, and genes were classified into 12 modules. Among them, the green module was most closely associated with AR. These genes were significantly enriched in 20 pathway terms, such as cytokine-cytokine receptor interaction, chemokine signaling pathway, and other important regulatory processes. Intersection with GS > 0.4, MM > 0.9, the top 10 MCC values and DEGs in the green module, and six hub genes (DOCK2, NCKAP1L, IL2RG, SLAMF8, CD180, and PTPRE) were identified. Their expression levels were all confirmed to be significantly elevated in AR patients in GEO, Nephroseq, and quantitative real-time PCR (qRT-PCR). Single-cell RNA sequencing showed that AR patient had a higher percentage of native T, CD1C+_B DC, NKT, NK, and monocytes in peripheral blood mononuclear cells (PBMCs). Xcell enrichment scores of 20 cell types were significantly different (p<0.01), mostly immune cells, such as B cells, CD4+ Tem, CD8+ T cells, CD8+ Tcm, macrophages, M1, and monocytes. GSEA suggests that highly expressed six hub genes are correlated with allograft rejection, interferon γ response, interferon α response, and inflammatory response. In addition, SLAMF8 is highly expressed in human kidney tissues of TCMR and in M1 phenotype macrophages of Raw264.7 cell line WGCNA accompanied by high expression of TLR4. Conclusion: This study demonstrates six hub genes and functionally enriched pathways related to AR. SLAMF8 is involved in the M1 macrophages via TLR4, which contributed to AR process.


Assuntos
Transplante de Rim , Receptor 4 Toll-Like , Redes Reguladoras de Genes , Humanos , Transplante de Rim/efeitos adversos , Leucócitos Mononucleares , Macrófagos , Proteínas de Membrana , Família de Moléculas de Sinalização da Ativação Linfocitária/genética
15.
Diagnostics (Basel) ; 12(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35204399

RESUMO

Chronic antibody-mediated rejection (AMR) is a key limiting factor for the clinical outcome of a kidney transplantation (Ktx), where early diagnosis and therapeutic intervention is needed. This study describes the identification of the biomarker CXC-motif chemokine ligand (CXCL) 9 as an indicator for AMR and presents a new aptamer-antibody-hybrid lateral flow assay (hybrid-LFA) for detection in urine. Biomarker evaluation included two independent cohorts of kidney transplant recipients (KTRs) from a protocol biopsy program and used subgroup comparisons according to BANFF-classifications. Plasma, urine and biopsy lysate samples were analyzed with a Luminex-based multiplex assay. The CXCL9-specific hybrid-LFA was developed based upon a specific rat antibody immobilized on a nitrocellulose-membrane and the coupling of a CXCL9-binding aptamer to gold nanoparticles. LFA performance was assessed according to receiver operating characteristic (ROC) analysis. Among 15 high-scored biomarkers according to a neural network analysis, significantly higher levels of CXCL9 were found in plasma and urine and biopsy lysates of KTRs with biopsy-proven AMR. The newly developed hybrid-LFA reached a sensitivity and specificity of 71% and an AUC of 0.79 for CXCL9. This point-of-care-test (POCT) improves early diagnosis-making in AMR after Ktx, especially in KTRs with undetermined status of donor-specific HLA-antibodies.

16.
BMC Nephrol ; 23(1): 27, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022021

RESUMO

BACKGROUND: After kidney transplantation, pregnancy and graft function may have a reciprocal interaction. We evaluated the influence of graft function on the course of pregnancy and vice versa. METHODS: We performed a retrospective observational study of 92 pregnancies beyond the first trimester in 67 women after renal transplantation from 1972 to 2019. Pre-pregnancy eGFR was correlated with outcome parameters; graft function was evaluated by Kaplan Meier analysis. The course of graft function in 28 women who became pregnant after kidney transplantation with an eGFR of < 50 mL/min/1.73m2 was compared to a control group of 79 non-pregnant women after kidney transplantation during a comparable time period and with a matched basal graft function. RESULTS: Live births were 90.5% (fetal death n = 9). Maternal complications of pregnancy were preeclampsia 24% (graft loss 1, fetal death 3), graft rejection 5.4% (graft loss 1), hemolytic uremic syndrome 2% (graft loss 1, fetal death 1), maternal hemorrhage 2% (fetal death 1), urinary obstruction 10%, and cesarian section. (76%). Fetal complications were low gestational age (34.44 ± 5.02 weeks) and low birth weight (2322.26 ± 781.98 g). Mean pre-pregnancy eGFR was 59.39 ± 17.62 mL/min/1.73m2 (15% of cases < 40 mL/min/1.73m2). Pre-pregnancy eGFR correlated with gestation week at delivery (R = 0.393, p = 0.01) and with percent eGFR decline during pregnancy (R = 0.243, p = 0.04). Pregnancy-related eGFR decline was inversely correlated with the time from end of pregnancy to chronic graft failure or maternal death (R = -0.47, p = 0.001). Kaplan Meier curves comparing women with pre-pregnancy eGFR of ≥ 50 to < 50 mL/min showed a significantly longer post-pregnancy graft survival in the higher eGFR group (p = 0.04). Women after kidney transplantation who became pregnant with a low eGFR of > 25 to < 50 mL/min/1.73m2 had a marked decline of renal function compared to a matched non-pregnant control group (eGFR decline in percent of basal eGFR 19.34 ± 22.10%, n = 28, versus 2.61 ± 10.95%, n = 79, p < 0.0001). CONCLUSIONS: After renal transplantation, pre-pregnancy graft function has a key role for pregnancy outcomes and graft function. In women with a low pre-pregnancy eGFR, pregnancy per se has a deleterious influence on graft function. TRIAL REGISTRATION: Since this was a retrospective observational case series and written consent of the patients was obtained for publication, according to our ethics' board the analysis was exempt from IRB approval. Clinical Trial Registration was not done. The study protocol was approved by the Ethics Committee of Hannover Medical School, Chairman Prof. Dr. H. D. Troeger, Hannover, December 12, 2015 (IRB No. 2995-2015).


Assuntos
Transplante de Rim , Rim/fisiologia , Complicações Pós-Operatórias/epidemiologia , Complicações na Gravidez/epidemiologia , Resultado da Gravidez , Adolescente , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Estudos Retrospectivos , Adulto Jovem
17.
Rev Cardiovasc Med ; 22(4): 1569-1575, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34957797

RESUMO

Lipoprotein(a) (Lp(a)) is becoming increasingly important as an independent risk factor for cardiovascular disease. Since no effective therapy currently exists other than lipid apheresis, the recommendation remains to optimally adjust all other cardiovascular risk factors (CVRF). In a Northwest German population study, the frequency of elevated Lp(a) levels and all other CVRF was investigated. The aim was to investigate whether individuals with elevated Lp(a) levels were also more likely to have other CVRFs. To date, 4602 individuals have been enrolled in the study, and blood pressure, weight, lipids, diabetes, medications, and pre-existing conditions were recorded in addition to Lp(a). In addition, questionnaires assessed physical activity, psychological stress, depression, and brain dysfunction. All participants received detailed individual recommendation about their CVRF and its treatment. In the further follow-up of 5 years, it will be examined how persons with elevated Lp(a) implemented these recommendations in comparison with participants without elevated Lp(a). The first group Lp(a) <75 nmol/L consisted of 3550 (80.2%), the Lp(a) 75-120 nmol/L group of 341 (7.4%) and the Lp(a) >120 nmol/L of 538 (11.7%). 81.6% of all participants had one or more CVRF. Age, sex, and prevalence of hypertension, diabetes, smoking, obesity, and exercise did not differ among the 3 groups. As expected, LDL-Cholesterol was significantly elevated in the Lp(a) >120 nmol/L group despite significantly more frequent use of statins. Significantly more often hypertensive patients were found in the Lp(a) >120 nmol/L group who were inadequately controlled by medication and significantly less often persons without further CVRF. No differences existed in the frequency of psychological stress, depression, and mild cognitive impairment. CVRF occur with comparable frequency in individuals with elevated Lp(a) levels. However, individuals with Lp(a) above 120 nmol/L were more likely to have poorly controlled blood pressure, elevated LDL-C, and less likely to have no other risk factors. This underlines that in case of Lp(a) elevation all further CVRF should be intensively adjusted, especially in case of strongly elevated values >120 nmol/L. However, these recommendations have not been adequately implemented in clinical care in this population to date.


Assuntos
Doenças Cardiovasculares , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , LDL-Colesterol , Fatores de Risco de Doenças Cardíacas , Humanos , Lipoproteína(a) , Fatores de Risco
18.
J Clin Med ; 10(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34640336

RESUMO

We hypothesized that multiparametric MRI is able to non-invasively assess, characterize and monitor renal allograft pathology in a translational mouse model of chronic allograft rejection. Chronic rejection was induced by allogenic kidney transplantation (ktx) of BALB/c-kidneys into C57BL/6-mice (n = 23). Animals after isogenic ktx (n = 18) and non-transplanted healthy animals (n = 22) served as controls. MRI sequences (7T) were acquired 3 and 6 weeks after ktx and quantitative T1, T2 and apparent diffusion coefficient (ADC) maps were calculated. In addition, in a subset of animals, histological changes after ktx were evaluated. Chronic rejection was associated with a significant prolongation of T1 time compared to isogenic ktx 3 (1965 ± 53 vs. 1457 ± 52 ms, p < 0.001) and 6 weeks after surgery (1899 ± 79 vs. 1393 ± 51 ms, p < 0.001). While mean T2 times and ADC were not significantly different between allogenic and isogenic kidney grafts, histogram-based analysis of ADC revealed significantly increased tissue heterogeneity in allografts at both time points (standard derivation/entropy/interquartile range, p < 0.05). Correspondingly, histological analysis showed severe inflammation, graft fibrosis and tissue heterogeneity in allogenic but not in isogenic kidney grafts. In conclusion, renal diffusion weighted imaging and mapping of T2 and T1 relaxation times enable detection of chronic renal allograft rejection in mice. The combined quantitative assessment of mean values and histograms provides non-invasive information of chronic changes in renal grafts and allows longitudinal monitoring.

19.
J Am Soc Nephrol ; 32(12): 3252-3264, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34706967

RESUMO

BACKGROUND: Calcineurin inhibitors (CNIs) are standard of care after kidney transplantation, but they are associated with nephrotoxicity and reduced long-term graft survival. Belatacept, a selective T cell costimulation blocker, is approved for the prophylaxis of kidney transplant rejection. This phase 3 trial evaluated the efficacy and safety of conversion from CNI-based to belatacept-based maintenance immunosuppression in kidney transplant recipients. METHODS: Stable adult kidney transplant recipients 6-60 months post-transplantation under CNI-based immunosuppression were randomized (1:1) to switch to belatacept or continue treatment with their established CNI. The primary end point was the percentage of patients surviving with a functioning graft at 24 months. RESULTS: Overall, 446 renal transplant recipients were randomized to belatacept conversion ( n =223) or CNI continuation ( n =223). The 24-month rates of survival with graft function were 98% and 97% in the belatacept and CNI groups, respectively (adjusted difference, 0.8; 95.1% CI, -2.1 to 3.7). In the belatacept conversion versus CNI continuation groups, 8% versus 4% of patients experienced biopsy-proven acute rejection (BPAR), respectively, and 1% versus 7% developed de novo donor-specific antibodies (dnDSAs), respectively. The 24-month eGFR was higher with belatacept (55.5 versus 48.5 ml/min per 1.73 m 2 with CNI). Both groups had similar rates of serious adverse events, infections, and discontinuations, with no unexpected adverse events. One patient in the belatacept group had post-transplant lymphoproliferative disorder. CONCLUSIONS: Switching stable renal transplant recipients from CNI-based to belatacept-based immunosuppression was associated with a similar rate of death or graft loss, improved renal function, and a numerically higher BPAR rate but a lower incidence of dnDSA.Clinical Trial registry name and registration number: A Study in Maintenance Kidney Transplant Recipients Following Conversion to Nulojix® (Belatacept)-Based, NCT01820572.


Assuntos
Inibidores de Calcineurina , Transplante de Rim , Adulto , Humanos , Abatacepte/uso terapêutico , Inibidores de Calcineurina/efeitos adversos , Transplante de Rim/efeitos adversos , Imunossupressores/efeitos adversos , Rim/fisiologia , Terapia de Imunossupressão , Rejeição de Enxerto , Transplantados , Sobrevivência de Enxerto
20.
Ann Transplant ; 26: e928922, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34267171

RESUMO

BACKGROUND Our kidney transplant waitlist includes 20% re-transplantations (TX2). Knowing what to expect is a clinical obligation. MATERIAL AND METHODS We compared graft and patient survival of all 162 TX2 patients, transplanted 2000 to 2009, with 162 patients after first transplantation (TX1) matched for age, sex, living/non-living donation, and transplantation date. Patient follow-up was 10 years. RESULTS TX2 graft and patient survivals were inferior to TX1 (p<0.001 and p=0.047). TX2 patients had a longer cumulative dialysis vintage, more human leucocyte antigen (HLA) mismatches, more panel-reactive HLA antibodies, more often received induction therapy with rabbit-antithymocyte globulin (rATG), and had a lower body mass index (all p<0.05). Death from infection and graft failure by rejection was more frequent after TX2 (both p<0.05) but not after TX1. Multivariable Cox regression analysis revealed that both cohorts had graft failure and death risk associated with infection and cardiovascular disease, and graft failure by humoral rejection. However, only TX2 patients had an additional risk of graft failure with early inferior graft function and of patient death with ≥2 comorbidities. Moreover, Kaplan-Meier analysis showed that TX2 and not TX1 patients had a lower graft and patient survival associated with infection and with ≥2 comorbidities (all p<0.05). CONCLUSIONS Re-transplantation is associated with worse graft outcomes mainly because of immunologic and graft-quality reasons, although the high number of comorbidities and infection severities aside from cardiovascular disease drive mortality. The more frequent rATG induction of TX2 patients could promote infection by enhancing immunosuppression. By addressing comorbidities, outcomes could possibly be improved.


Assuntos
Transplante de Rim , Reoperação , Doença Aguda , Feminino , Rejeição de Enxerto/etiologia , Humanos , Rim , Masculino , Pessoa de Meia-Idade , Pancreatite , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA