Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Biochem Biophys Res Commun ; 726: 150269, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38909533

RESUMO

Mitochondrial dysfunction is implicated in a wide range of human disorders including many neurodegenerative and cardiovascular diseases, metabolic diseases, cancers, and respiratory disorders. Studies have suggested the potential of l-ergothioneine (ET), a unique dietary thione, to prevent mitochondrial damage and improve disease outcome. Despite this, no studies have definitively demonstrated uptake of ET into mitochondria. Moreover, the expression of the known ET transporter, OCTN1, on the mitochondria remains controversial. In this study, we utilise mass spectrometry to demonstrate direct ET uptake in isolated mitochondria as well as its presence in mitochondria isolated from ET-treated cells and animals. Mitochondria isolated from OCTN1 knockout mice tissues, have impaired but still detectable ET uptake, raising the possibility of alternative transporter(s) which may facilitate ET uptake into the mitochondria. Our data confirm that ET can enter mitochondria, providing a basis for further work on ET in the prevention of mitochondrial dysfunction in human disease.

2.
Antioxidants (Basel) ; 13(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38929132

RESUMO

Cell death involving oxidative stress and mitochondrial dysfunction is a major cause of dopaminergic neuronal loss in the substantia nigra (SN) of Parkinson's disease patients. Ergothioneine (ET), a natural dietary compound, has been shown to have cytoprotective functions, but neuroprotective actions against PD have not been well established. 6-Hydroxydopamine (6-OHDA) is a widely used neurotoxin to simulate the degeneration of dopaminergic (DA) neurons in Parkinson's disease. In this study, we investigated the protective effect of ET on 6-OHDA treated iPSC-derived dopaminergic neurons (iDAs) and further confirmed the protective effects in 6-OHDA-treated human neuroblastoma SH-SY5Y cells. In 6-OHDA-treated cells, decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial reactive oxygen species (mROS), reduced cellular ATP levels, and increased total protein carbonylation levels were observed. 6-OHDA treatment also significantly decreased tyrosine hydroxylase levels. These effects were significantly decreased when ET was present. Verapamil hydrochloride (VHCL), a non-specific inhibitor of the ET transporter OCTN1 abrogated ET's cytoprotective effects, indicative of an intracellular action. These results suggest that ET could be a potential therapeutic for Parkinson's disease.

3.
Free Radic Biol Med ; 209(Pt 1): 165-170, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37852545

RESUMO

The role of iron in promoting atherosclerosis, and hence the cardiovascular, neurodegenerative and other diseases that result from atherosclerosis, has been fiercely controversial. Many studies have been carried out on various rodent models of atherosclerosis, especially on apoE-knockout (apoE-/-) mice, which develop atherosclerosis more readily than normal mice. These apoE-/- mouse studies generally support a role for iron in atherosclerosis development, although there are conflicting results. The purpose of the current article is to describe studies on another animal model that is not genetically manipulated; New Zealand White (NZW) rabbits fed a high-cholesterol diet. This may be a better model than the apoE-/- mice for human atherosclerosis, although it has been given much less attention. Studies on NZW rabbits support the view that iron promotes atherosclerosis, although some uncertainties remain, which need to be resolved by further experimentation.


Assuntos
Aterosclerose , Hipercolesterolemia , Coelhos , Humanos , Animais , Camundongos , Ferro , Aterosclerose/genética , Apolipoproteínas E , Modelos Animais , Modelos Animais de Doenças , Camundongos Knockout
4.
Antioxidants (Basel) ; 12(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36829879

RESUMO

Background: Anthracyclines such as doxorubicin remain a primary treatment for hematological malignancies and breast cancers. However, cardiotoxicity induced by anthracyclines, possibly leading to heart failure, severely limits their application. The pathological mechanisms of anthracycline-induced cardiac injury are believed to involve iron-overload-mediated formation of reactive oxygen species (ROS), mitochondrial dysfunction, and inflammation. The dietary thione, ergothioneine (ET), is avidly absorbed and accumulated in tissues, including the heart. Amongst other cytoprotective properties, ET was shown to scavenge ROS, decrease proinflammatory mediators, and chelate metal cations, including Fe2+, preventing them from partaking in redox activities, and may protect against mitochondrial damage and dysfunction. Plasma ET levels are also strongly correlated to a decreased risk of cardiovascular events in humans, suggesting a cardioprotective role. This evidence highlights ET's potential to counteract anthracycline cardiotoxicity. Methods and Findings: We investigated whether ET supplementation can protect against cardiac dysfunction in mice models of doxorubicin-induced cardiotoxicity and revealed that it had significant protective effects. Moreover, ET administration in a mouse breast cancer model did not exacerbate the growth of the tumor or interfere with the chemotherapeutic efficacy of doxorubicin. Conclusion: These results suggest that ET could be a viable co-therapy to alleviate the cardiotoxic effects of anthracyclines in the treatment of cancers.

5.
Annu Rev Food Sci Technol ; 14: 323-345, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36623925

RESUMO

This article reviews what is presently known about the biological roles of the diet-derived compound ergothioneine (ET). ET seems important to humans because it is rapidly taken up from the diet by a transporter largely or completely specific for ET, and once taken up it is retained within the body for weeks or months. The various possible functions of ET in vivo are explored. Much emphasis has been placed on the antioxidant properties of ET, but although these are well established in vitro, the evidence that antioxidant activity is the principal function of ET in vivo is weak. ET is not unique in this: The evidence for the antioxidant roles of vitamin C and polyphenols such as the flavonoids in vivo is also weak. By contrast, α-tocopherol has demonstrated in vivo antioxidant effects in humans.


Assuntos
Antioxidantes , Ergotioneína , Humanos , Dieta
7.
Arch Biochem Biophys ; 726: 109320, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35715256

RESUMO

This commentary describes a highly-cited paper by John Gutteridge and myself that appeared in Arch. Biochem. Biophys. It is dedicated to the memory of John Gutteridge, my frequent co-author and a lifelong friend, who sadly passed away on July 5, 2021.


Assuntos
Biologia , Ferro , Radicais Livres
8.
Arch Biochem Biophys ; 718: 109151, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35181351

RESUMO

This commentary describes a highly-cited paper by John Gutteridge and myself that appeared in Arch. Biochem. Biophys. It is dedicated to the memory of John Gutteridge, my frequent co-author and a lifelong friend, who sadly passed away on July 5, 2021.


Assuntos
Ferro , Oxigênio , Biologia , Radicais Livres
9.
Free Radic Biol Med ; 177: 201-211, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673145

RESUMO

Ergothioneine (ET) is a dietary amino-thione with strong antioxidant and cytoprotective properties and has possible therapeutic potential for neurodegenerative and vascular diseases. Decreased blood concentrations of ET have been found in patients with mild cognitive impairment, but its status in neurodegenerative and vascular dementias is currently unclear. To address this, a cross-sectional study was conducted on 496 participants, consisting of 88 with no cognitive impairment (NCI), 201 with cognitive impairment, no dementia (CIND) as well as 207 with dementia, of whom 160 have Alzheimer's Disease (AD) and 47 have vascular dementia. All subjects underwent blood-draw, neuropsychological assessments, as well as neuroimaging assessments of cerebrovascular diseases (CeVD) and brain atrophy. Plasma ET as well as its metabolite l-hercynine were measured using high sensitivity liquid chromatography tandem-mass spectrometry (LC-MS/MS). Plasma ET concentrations were lowest in dementia (p < 0.001 vs. NCI and CIND), with intermediate levels in CIND (p < 0.001 vs. NCI). A significant increase in l-hercynine to ET ratio was also observed in dementia (p < 0.01 vs. NCI). In multivariate models adjusted for demographic and vascular risk factors, lower levels of ET were significantly associated with dementia both with or without CeVD, while ET associations with CIND were significant only in the presence of CeVD. Furthermore, lower ET levels were also associated with white matter hyperintensities and brain atrophy markers (reduced global cortical thickness and hippocampal volumes). The incremental decreases in ET levels along the CIND-dementia clinical continuum suggest that low levels of ET are associated with disease severity and could be a potential biomarker for cognitive impairment. Deficiency of ET may contribute towards neurodegeneration- and CeVD-associated cognitive impairments, possibly via the exacerbation of oxidative stress in these conditions.


Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Disfunção Cognitiva , Ergotioneína , Cromatografia Líquida , Disfunção Cognitiva/etiologia , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Espectrometria de Massas em Tandem
11.
Adv Mater ; 32(29): e2001459, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32484308

RESUMO

Near-infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless-based phototherapies by converting deep-tissue-penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep-sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA-approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5-aminolevulinic acid (5-ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR-based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep-tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep-tissue light delivery.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Fotoquimioterapia/instrumentação , Polietilenoglicóis/química , Tecnologia sem Fio , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Camundongos , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
12.
J Alzheimers Dis ; 68(1): 197-203, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775990

RESUMO

We examined the cross-sectional association between mushroom intake and mild cognitive impairment (MCI) using data from 663 participants aged 60 and above from the Diet and Healthy Aging (DaHA) study in Singapore. Compared with participants who consumed mushrooms less than once per week, participants who consumed mushrooms >2 portions per week had reduced odds of having MCI (odds ratio = 0.43, 95% CI 0.23-0.78, p = 0.006) and this association was independent of age, gender, education, cigarette smoking, alcohol consumption, hypertension, diabetes, heart disease, stroke, physical activities, and social activities. Our cross-sectional data support the potential role of mushrooms and their bioactive compounds in delaying neurodegeneration.


Assuntos
Agaricales , Disfunção Cognitiva/diagnóstico , Dieta , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Avaliação Geriátrica , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Proteção , Fatores de Risco , Singapura
14.
FEBS Lett ; 592(20): 3357-3366, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29851075

RESUMO

Ergothioneine is a thiol/thione molecule synthesised only by some fungi and bacteria. Nonetheless, it is avidly taken up from the diet by humans and other animals through a transporter, OCTN1, and accumulates to high levels in certain tissues. Ergothioneine is not rapidly metabolised, or excreted in urine and is present in many, if not all, human tissues and body fluids. Ergothioneine has powerful antioxidant and cytoprotective properties in vitro and there is evidence that the body may concentrate it at sites of tissue injury by raising OCTN1 levels. Decreased blood and/or plasma levels of ergothioneine have been observed in some diseases, suggesting that a deficiency could be relevant to the disease onset or progression. This brief Review explores the possible roles of ergothioneine in human health and disease.


Assuntos
Antioxidantes/metabolismo , Citoproteção , Dieta , Ergotioneína/metabolismo , Animais , Ergotioneína/administração & dosagem , Ergotioneína/sangue , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Simportadores
15.
FASEB J ; : fj201800716, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29890088

RESUMO

Bacteria use various endogenous antioxidants for protection against oxidative stress associated with environmental survival or host infection. Although glutathione (GSH) is the most abundant and widely used antioxidant in Proteobacteria, ergothioneine (EGT) is another microbial antioxidant, mainly produced by fungi and Actinobacteria. The Burkholderia genus is found in diverse environmental niches. We observed that gene homologs required for the synthesis of EGT are widely distributed throughout the genus. By generating gene-deletion mutants and monitoring production with isotope-labeled substrates, we show that pathogenic Burkholderia pseudomallei and environmental B. thailandensis are able to synthesize EGT de novo. Unlike most other bacterial EGT synthesis pathways described, Burkholderia spp. use cysteine rather than γ-glutamyl cysteine as the thiol donor. Analysis of recombinant EgtB indicated that it is a proficient sulfoxide synthase, despite divergence in the active site architecture from that of mycobacteria. The absence of GSH, but not EGT, increased bacterial susceptibility to oxidative stresses in vitro. However, deletion of EGT synthesis conferred a reduced fitness to B. pseudomallei, with a delay in organ colonization and time to death during mouse infection. Therefore, despite the lack of an apparent antioxidant role in vitro, EGT is important for optimal bacterial pathogenesis in the mammalian host.-Gamage, A. M., Liao, C., Cheah, I. K., Chen, Y., Lim, D. R. X., Ku, J. W. K., Chee, R. S. L., Gengenbacher, M., Seebeck, F. P., Halliwell, B., Gan, Y.-H. The proteobacterial species Burkholderia pseudomallei produces ergothioneine, which enhances virulence in mammalian infection.

16.
Antioxid Redox Signal ; 26(5): 193-206, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-27488221

RESUMO

AIM: We investigated the uptake and pharmacokinetics of l-ergothioneine (ET), a dietary thione with free radical scavenging and cytoprotective capabilities, after oral administration to humans, and its effect on biomarkers of oxidative damage and inflammation. RESULTS: After oral administration, ET is avidly absorbed and retained by the body with significant elevations in plasma and whole blood concentrations, and relatively low urinary excretion (<4% of administered ET). ET levels in whole blood were highly correlated to levels of hercynine and S-methyl-ergothioneine, suggesting that they may be metabolites. After ET administration, some decreasing trends were seen in biomarkers of oxidative damage and inflammation, including allantoin (urate oxidation), 8-hydroxy-2'-deoxyguanosine (DNA damage), 8-iso-PGF2α (lipid peroxidation), protein carbonylation, and C-reactive protein. However, most of the changes were non-significant. INNOVATION: This is the first study investigating the administration of pure ET to healthy human volunteers and monitoring its uptake and pharmacokinetics. This compound is rapidly gaining attention due to its unique properties, and this study lays the foundation for future human studies. CONCLUSION: The uptake and retention of ET by the body suggests an important physiological function. The decreasing trend of oxidative damage biomarkers is consistent with animal studies suggesting that ET may function as a major antioxidant but perhaps only under conditions of oxidative stress. Antioxid. Redox Signal. 26, 193-206.


Assuntos
Antioxidantes/administração & dosagem , Biomarcadores , Ergotioneína/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , 8-Hidroxi-2'-Desoxiguanosina , Alantoína/metabolismo , Antioxidantes/química , Antioxidantes/farmacocinética , Betaína/análogos & derivados , Betaína/metabolismo , Proteína C-Reativa/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Monitoramento de Medicamentos , Ergotioneína/química , Ergotioneína/farmacocinética , Voluntários Saudáveis , Histidina/análogos & derivados , Histidina/metabolismo , Humanos , Inflamação/metabolismo
17.
Free Radic Res ; 50(1): 14-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26634964

RESUMO

L-ergothioneine (ET), a putative antioxidant compound acquired by animals through dietary sources, has been suggested to accumulate in certain cells and tissues in the body that are predisposed to high oxidative stress. In the present study, we identified an elevation of ET in the liver of a guinea pig model of non-alcoholic fatty liver disease (NAFLD), elucidated a possible mechanism for the increased uptake and investigated the possible role for this accumulation. This increase in liver ET levels correlated with cholesterol accumulation and disease severity. We identified an increase in the transcriptional factor, RUNX1, which has been shown to upregulate the expression of the ET-specific transporter OCTN1, and could consequently lead to the observable elevation in ET. An increase was also seen in heat shock protein 70 (HSP70) which seemingly corresponds to ET elevation. No significant increase was observed in oxidative damage markers, F2-isoprostanes, and protein carbonyls, which could possibly be attributed to the increase in liver ET through direct antioxidant action, induction of HSP70, or by chelation of Fe(2+), preventing redox chemistry. The data suggest a novel mechanism by which the guinea pig fatty liver accumulates ET via upregulation of its transporter, as a possible stress response by the damaged liver to further suppress oxidative damage and delay tissue injury. Similar events may happen in other animal models of disease, and researchers should be aware of the possibility.


Assuntos
Modelos Animais de Doenças , Ergotioneína/fisiologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Animais , Proteínas de Transporte/genética , Colesterol , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Progressão da Doença , Cobaias , Proteínas de Choque Térmico HSP70/genética , Fígado/fisiopatologia , Masculino , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Regulação para Cima
18.
Biochem Biophys Res Commun ; 460(4): 938-43, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25839656

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by the constitutive up-regulation of the hypoxia inducible factor-1. One of its target enzymes, pyruvate dehydrogenase (PDH) kinase 1 (PDHK1) showed increased protein expression in tumor as compared to patient-matched normal tissues. PDHK1 phosphorylated and inhibited PDH whose enzymatic activity was severely diminished, depriving the TCA cycle of acetylCoA. We and others have shown a decrease in the protein expressions of all respiratory complexes alluding to a compromise in oxidative phosphorylation (OXPHOS). On the contrary, we found that key parameters of OXPHOS, namely ATP biosynthesis and membrane potential were consistently measurable in mitochondria isolated from ccRCC tumor tissues. Interestingly, an endogenous mitochondrial membrane potential (MMP) was evident when ADP was added to mitochondria isolated from ccRCC but not in normal tissues. In addition, the MMP elicited in the presence of ADP by respiratory substrates namely malate/glutamate, succinate, α-ketoglutarate and isocitrate was invariably higher in ccRCC. Two additional hallmarks of ccRCC include a loss of uncoupling protein (UCP)-2 and an increase in UCP-3. Based on our data, we proposed that inhibition of UCP3 by ADP could contribute to the endogenous MMP observed in ccRCC and other cancer cells.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Western Blotting , Carcinoma de Células Renais/enzimologia , Humanos , Neoplasias Renais/enzimologia , Metaloproteinases da Matriz/metabolismo , Fosforilação Oxidativa , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil
19.
Biomed J ; 37(3): 99-105, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24923566

RESUMO

Cell culture is widely used by biochemists and cell/molecular biologists, but the fluctuating (and often elevated) levels of O 2 to which cells in culture are exposed can affect many of their properties. So can the low level of antioxidants found in some cell culture media. Reagents, especially "antioxidants," added to cell culture media can react with the constituents of the media to produce H 2 O 2 and degradation products that can influence cell behavior. Several published papers describing the cellular effects of ascorbate, polyphenols, and carotenoids have, in fact, reported artifacts due to the actions of the degradation products of these "antioxidants." A greater awareness of the potential artifacts in cell culture studies is needed among the free radical/antioxidant community.


Assuntos
Antioxidantes/farmacologia , Técnicas de Cultura de Células , Meios de Cultura , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Hiperglicemia/metabolismo
20.
Free Radic Biol Med ; 71: 390-401, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24637264

RESUMO

ß-Amyloid (Aß)-induced toxicity and oxidative stress have been postulated to play critical roles in the pathogenic mechanism of Alzheimer disease (AD). We investigated the in vivo ability of a mitochondria-targeted antioxidant, MitoQ, to protect against Aß-induced toxicity and oxidative stress in a Caenorhabditis elegans model overexpressing human Aß. Impairment of electron transport chain (ETC) enzymatic activity and mitochondrial dysfunction are early features of AD. We show that MitoQ extends lifespan, delays Aß-induced paralysis, ameliorates depletion of the mitochondrial lipid cardiolipin, and protects complexes IV and I of the ETC. Despite its protective effects on lifespan, healthspan, and ETC function, we find that MitoQ does not reduce DCFDA fluorescence, protein carbonyl levels or modulate steadystate ATP levels or oxygen consumption rate. Moreover, MitoQ does not attenuate mitochondrial DNA (mtDNA) oxidative damage. In agreement with its design, the protective effects of MitoQ appear to be targeted specifically to the mitochondrial membrane and our findings suggest that MitoQ may have therapeutic potential for Aß- and oxidative stress-associated neurodegenerative disorders, particularly AD.


Assuntos
Antioxidantes/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Ubiquinona/análogos & derivados , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Complexo de Proteínas da Cadeia de Transporte de Elétrons/agonistas , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Expressão Gênica , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Membranas Mitocondriais/efeitos dos fármacos , Estresse Oxidativo , Consumo de Oxigênio , Carbonilação Proteica , Espécies Reativas de Oxigênio/metabolismo , Transgenes , Ubiquinona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA