Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 99: 103307, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39303447

RESUMO

Automatic analysis of colonoscopy images has been an active field of research motivated by the importance of early detection of precancerous polyps. However, detecting polyps during the live examination can be challenging due to various factors such as variation of skills and experience among the endoscopists, lack of attentiveness, and fatigue leading to a high polyp miss-rate. Therefore, there is a need for an automated system that can flag missed polyps during the examination and improve patient care. Deep learning has emerged as a promising solution to this challenge as it can assist endoscopists in detecting and classifying overlooked polyps and abnormalities in real time, improving the accuracy of diagnosis and enhancing treatment. In addition to the algorithm's accuracy, transparency and interpretability are crucial to explaining the whys and hows of the algorithm's prediction. Further, conclusions based on incorrect decisions may be fatal, especially in medicine. Despite these pitfalls, most algorithms are developed in private data, closed source, or proprietary software, and methods lack reproducibility. Therefore, to promote the development of efficient and transparent methods, we have organized the "Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image Segmentation (MedAI 2021)" competitions. The Medico 2020 challenge received submissions from 17 teams, while the MedAI 2021 challenge also gathered submissions from another 17 distinct teams in the following year. We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic. Our analysis revealed that the participants improved dice coefficient metrics from 0.8607 in 2020 to 0.8993 in 2021 despite adding diverse and challenging frames (containing irregular, smaller, sessile, or flat polyps), which are frequently missed during a routine clinical examination. For the instrument segmentation task, the best team obtained a mean Intersection over union metric of 0.9364. For the transparency task, a multi-disciplinary team, including expert gastroenterologists, accessed each submission and evaluated the team based on open-source practices, failure case analysis, ablation studies, usability and understandability of evaluations to gain a deeper understanding of the models' credibility for clinical deployment. The best team obtained a final transparency score of 21 out of 25. Through the comprehensive analysis of the challenge, we not only highlight the advancements in polyp and surgical instrument segmentation but also encourage subjective evaluation for building more transparent and understandable AI-based colonoscopy systems. Moreover, we discuss the need for multi-center and out-of-distribution testing to address the current limitations of the methods to reduce the cancer burden and improve patient care.

2.
PLoS One ; 19(5): e0304069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820304

RESUMO

Deep learning has achieved immense success in computer vision and has the potential to help physicians analyze visual content for disease and other abnormalities. However, the current state of deep learning is very much a black box, making medical professionals skeptical about integrating these methods into clinical practice. Several methods have been proposed to shed some light on these black boxes, but there is no consensus on the opinion of medical doctors that will consume these explanations. This paper presents a study asking medical professionals about their opinion of current state-of-the-art explainable artificial intelligence methods when applied to a gastrointestinal disease detection use case. We compare two different categories of explanation methods, intrinsic and extrinsic, and gauge their opinion of the current value of these explanations. The results indicate that intrinsic explanations are preferred and that physicians see value in the explanations. Based on the feedback collected in our study, future explanations of medical deep neural networks can be tailored to the needs and expectations of doctors. Hopefully, this will contribute to solving the issue of black box medical systems and lead to successful implementation of this powerful technology in the clinic.


Assuntos
Aprendizado Profundo , Médicos , Humanos , Médicos/psicologia , Inteligência Artificial , Redes Neurais de Computação , Pólipos do Colo/diagnóstico , Colonoscopia/métodos
3.
Sci Rep ; 14(1): 2032, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263232

RESUMO

Polyps are well-known cancer precursors identified by colonoscopy. However, variability in their size, appearance, and location makes the detection of polyps challenging. Moreover, colonoscopy surveillance and removal of polyps are highly operator-dependent procedures and occur in a highly complex organ topology. There exists a high missed detection rate and incomplete removal of colonic polyps. To assist in clinical procedures and reduce missed rates, automated methods for detecting and segmenting polyps using machine learning have been achieved in past years. However, the major drawback in most of these methods is their ability to generalise to out-of-sample unseen datasets from different centres, populations, modalities, and acquisition systems. To test this hypothesis rigorously, we, together with expert gastroenterologists, curated a multi-centre and multi-population dataset acquired from six different colonoscopy systems and challenged the computational expert teams to develop robust automated detection and segmentation methods in a crowd-sourcing Endoscopic computer vision challenge. This work put forward rigorous generalisability tests and assesses the usability of devised deep learning methods in dynamic and actual clinical colonoscopy procedures. We analyse the results of four top performing teams for the detection task and five top performing teams for the segmentation task. Our analyses demonstrate that the top-ranking teams concentrated mainly on accuracy over the real-time performance required for clinical applicability. We further dissect the devised methods and provide an experiment-based hypothesis that reveals the need for improved generalisability to tackle diversity present in multi-centre datasets and routine clinical procedures.


Assuntos
Crowdsourcing , Aprendizado Profundo , Pólipos , Humanos , Colonoscopia , Computadores
4.
Sci Data ; 10(1): 806, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973836

RESUMO

Cells in living organisms are dynamic compartments that continuously respond to changes in their environment to maintain physiological homeostasis. While basal autophagy exists in cells to aid in the regular turnover of intracellular material, autophagy is also a critical cellular response to stress, such as nutritional depletion. Conversely, the deregulation of autophagy is linked to several diseases, such as cancer, and hence, autophagy constitutes a potential therapeutic target. Image analysis to follow autophagy in cells, especially on high-content screens, has proven to be a bottleneck. Machine learning (ML) algorithms have recently emerged as crucial in analyzing images to efficiently extract information, thus contributing to a better understanding of the questions at hand. This paper presents CELLULAR, an open dataset consisting of images of cells expressing the autophagy reporter mRFP-EGFP-Atg8a with cell-specific segmentation masks. Each cell is annotated into either basal autophagy, activated autophagy, or unknown. Furthermore, we introduce some preliminary experiments using the dataset that can be used as a baseline for future research.


Assuntos
Autofagia , Autofagia/fisiologia , Humanos , Animais
5.
Sci Data ; 10(1): 75, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746950

RESUMO

Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp's number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a large multicentre purpose-built dataset, one reason being the lack of a comprehensive public dataset. As a result, the developed methods may not generalise to different population datasets. To this extent, we have curated a dataset from six unique centres incorporating more than 300 patients. The dataset includes both single frame and sequence data with 3762 annotated polyp labels with precise delineation of polyp boundaries verified by six senior gastroenterologists. To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as PolypGen) curated by a team of computational scientists and expert gastroenterologists. The paper provides insight into data construction and annotation strategies, quality assurance, and technical validation.


Assuntos
Neoplasias do Colo , Pólipos do Colo , Humanos , Pólipos do Colo/diagnóstico , Colonoscopia/métodos
6.
Comput Biol Med ; 143: 105227, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35124439

RESUMO

Widely used traditional supervised deep learning methods require a large number of training samples but often fail to generalize on unseen datasets. Therefore, a more general application of any trained model is quite limited for medical imaging for clinical practice. Using separately trained models for each unique lesion category or a unique patient population will require sufficiently large curated datasets, which is not practical to use in a real-world clinical set-up. Few-shot learning approaches can not only minimize the need for an enormous number of reliable ground truth labels that are labour-intensive and expensive, but can also be used to model on a dataset coming from a new population. To this end, we propose to exploit an optimization-based implicit model agnostic meta-learning (iMAML) algorithm under few-shot settings for medical image segmentation. Our approach can leverage the learned weights from diverse but small training samples to perform analysis on unseen datasets with high accuracy. We show that, unlike classical few-shot learning approaches, our method improves generalization capability. To our knowledge, this is the first work that exploits iMAML for medical image segmentation and explores the strength of the model on scenarios such as meta-training on unique and mixed instances of lesion datasets. Our quantitative results on publicly available skin and polyp datasets show that the proposed method outperforms the naive supervised baseline model and two recent few-shot segmentation approaches by large margins. In addition, our iMAML approach shows an improvement of 2%-4% in dice score compared to its counterpart MAML for most experiments.

7.
Ocul Surf ; 23: 74-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843999

RESUMO

Dry eye disease (DED) has a prevalence of between 5 and 50%, depending on the diagnostic criteria used and population under study. However, it remains one of the most underdiagnosed and undertreated conditions in ophthalmology. Many tests used in the diagnosis of DED rely on an experienced observer for image interpretation, which may be considered subjective and result in variation in diagnosis. Since artificial intelligence (AI) systems are capable of advanced problem solving, use of such techniques could lead to more objective diagnosis. Although the term 'AI' is commonly used, recent success in its applications to medicine is mainly due to advancements in the sub-field of machine learning, which has been used to automatically classify images and predict medical outcomes. Powerful machine learning techniques have been harnessed to understand nuances in patient data and medical images, aiming for consistent diagnosis and stratification of disease severity. This is the first literature review on the use of AI in DED. We provide a brief introduction to AI, report its current use in DED research and its potential for application in the clinic. Our review found that AI has been employed in a wide range of DED clinical tests and research applications, primarily for interpretation of interferometry, slit-lamp and meibography images. While initial results are promising, much work is still needed on model development, clinical testing and standardisation.


Assuntos
Síndromes do Olho Seco , Oftalmologia , Inteligência Artificial , Síndromes do Olho Seco/diagnóstico , Humanos , Aprendizado de Máquina
8.
IEEE Access ; 9: 40496-40510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747684

RESUMO

Computer-aided detection, localisation, and segmentation methods can help improve colonoscopy procedures. Even though many methods have been built to tackle automatic detection and segmentation of polyps, benchmarking of state-of-the-art methods still remains an open problem. This is due to the increasing number of researched computer vision methods that can be applied to polyp datasets. Benchmarking of novel methods can provide a direction to the development of automated polyp detection and segmentation tasks. Furthermore, it ensures that the produced results in the community are reproducible and provide a fair comparison of developed methods. In this paper, we benchmark several recent state-of-the-art methods using Kvasir-SEG, an open-access dataset of colonoscopy images for polyp detection, localisation, and segmentation evaluating both method accuracy and speed. Whilst, most methods in literature have competitive performance over accuracy, we show that the proposed ColonSegNet achieved a better trade-off between an average precision of 0.8000 and mean IoU of 0.8100, and the fastest speed of 180 frames per second for the detection and localisation task. Likewise, the proposed ColonSegNet achieved a competitive dice coefficient of 0.8206 and the best average speed of 182.38 frames per second for the segmentation task. Our comprehensive comparison with various state-of-the-art methods reveals the importance of benchmarking the deep learning methods for automated real-time polyp identification and delineations that can potentially transform current clinical practices and minimise miss-detection rates.

9.
Med Image Anal ; 70: 102007, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740740

RESUMO

Gastrointestinal (GI) endoscopy has been an active field of research motivated by the large number of highly lethal GI cancers. Early GI cancer precursors are often missed during the endoscopic surveillance. The high missed rate of such abnormalities during endoscopy is thus a critical bottleneck. Lack of attentiveness due to tiring procedures, and requirement of training are few contributing factors. An automatic GI disease classification system can help reduce such risks by flagging suspicious frames and lesions. GI endoscopy consists of several multi-organ surveillance, therefore, there is need to develop methods that can generalize to various endoscopic findings. In this realm, we present a comprehensive analysis of the Medico GI challenges: Medical Multimedia Task at MediaEval 2017, Medico Multimedia Task at MediaEval 2018, and BioMedia ACM MM Grand Challenge 2019. These challenges are initiative to set-up a benchmark for different computer vision methods applied to the multi-class endoscopic images and promote to build new approaches that could reliably be used in clinics. We report the performance of 21 participating teams over a period of three consecutive years and provide a detailed analysis of the methods used by the participants, highlighting the challenges and shortcomings of the current approaches and dissect their credibility for the use in clinical settings. Our analysis revealed that the participants achieved an improvement on maximum Mathew correlation coefficient (MCC) from 82.68% in 2017 to 93.98% in 2018 and 95.20% in 2019 challenges, and a significant increase in computational speed over consecutive years.


Assuntos
Endoscopia Gastrointestinal , Endoscopia , Diagnóstico por Imagem , Humanos
10.
Med Image Anal ; 70: 101920, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33676097

RESUMO

Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions. While numerous methods for detecting, segmenting and tracking of medical instruments based on endoscopic video images have been proposed in the literature, key limitations remain to be addressed: Firstly, robustness, that is, the reliable performance of state-of-the-art methods when run on challenging images (e.g. in the presence of blood, smoke or motion artifacts). Secondly, generalization; algorithms trained for a specific intervention in a specific hospital should generalize to other interventions or institutions. In an effort to promote solutions for these limitations, we organized the Robust Medical Instrument Segmentation (ROBUST-MIS) challenge as an international benchmarking competition with a specific focus on the robustness and generalization capabilities of algorithms. For the first time in the field of endoscopic image processing, our challenge included a task on binary segmentation and also addressed multi-instance detection and segmentation. The challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures from three different types of surgery. The validation of the competing methods for the three tasks (binary segmentation, multi-instance detection and multi-instance segmentation) was performed in three different stages with an increasing domain gap between the training and the test data. The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap. While the average detection and segmentation quality of the best-performing algorithms is high, future research should concentrate on detection and segmentation of small, crossing, moving and transparent instrument(s) (parts).


Assuntos
Processamento de Imagem Assistida por Computador , Laparoscopia , Algoritmos , Artefatos
11.
IEEE J Biomed Health Inform ; 25(6): 2029-2040, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33400658

RESUMO

Colonoscopy is considered the gold standard for detection of colorectal cancer and its precursors. Existing examination methods are, however, hampered by high overall miss-rate, and many abnormalities are left undetected. Computer-Aided Diagnosis systems based on advanced machine learning algorithms are touted as a game-changer that can identify regions in the colon overlooked by the physicians during endoscopic examinations, and help detect and characterize lesions. In previous work, we have proposed the ResUNet++ architecture and demonstrated that it produces more efficient results compared with its counterparts U-Net and ResUNet. In this paper, we demonstrate that further improvements to the overall prediction performance of the ResUNet++ architecture can be achieved by using Conditional Random Field (CRF) and Test-Time Augmentation (TTA). We have performed extensive evaluations and validated the improvements using six publicly available datasets: Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB, ASU-Mayo Clinic Colonoscopy Video Database, and CVC-VideoClinicDB. Moreover, we compare our proposed architecture and resulting model with other state-of-the-art methods. To explore the generalization capability of ResUNet++ on different publicly available polyp datasets, so that it could be used in a real-world setting, we performed an extensive cross-dataset evaluation. The experimental results show that applying CRF and TTA improves the performance on various polyp segmentation datasets both on the same dataset and cross-dataset. To check the model's performance on difficult to detect polyps, we selected, with the help of an expert gastroenterologist, 196 sessile or flat polyps that are less than ten millimeters in size. This additional data has been made available as a subset of Kvasir-SEG. Our approaches showed good results for flat or sessile and smaller polyps, which are known to be one of the major reasons for high polyp miss-rates. This is one of the significant strengths of our work and indicates that our methods should be investigated further for use in clinical practice.


Assuntos
Pólipos do Colo , Algoritmos , Pólipos do Colo/diagnóstico por imagem , Colonoscopia , Diagnóstico por Computador , Humanos , Redes Neurais de Computação
12.
Sci Data ; 7(1): 283, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859981

RESUMO

Artificial intelligence is currently a hot topic in medicine. However, medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel for the cumbersome and tedious process to manually label training data. These constraints make it difficult to develop systems for automatic analysis, like detecting disease or other lesions. In this respect, this article presents HyperKvasir, the largest image and video dataset of the gastrointestinal tract available today. The data is collected during real gastro- and colonoscopy examinations at Bærum Hospital in Norway and partly labeled by experienced gastrointestinal endoscopists. The dataset contains 110,079 images and 374 videos, and represents anatomical landmarks as well as pathological and normal findings. The total number of images and video frames together is around 1 million. Initial experiments demonstrate the potential benefits of artificial intelligence-based computer-assisted diagnosis systems. The HyperKvasir dataset can play a valuable role in developing better algorithms and computer-assisted examination systems not only for gastro- and colonoscopy, but also for other fields in medicine.


Assuntos
Inteligência Artificial , Diagnóstico por Computador , Endoscopia Gastrointestinal , Humanos , Interpretação de Imagem Assistida por Computador
13.
World J Gastroenterol ; 24(45): 5057-5062, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30568383

RESUMO

Assisted diagnosis using artificial intelligence has been a holy grail in medical research for many years, and recent developments in computer hardware have enabled the narrower area of machine learning to equip clinicians with potentially useful tools for computer assisted diagnosis (CAD) systems. However, training and assessing a computer's ability to diagnose like a human are complex tasks, and successful outcomes depend on various factors. We have focused our work on gastrointestinal (GI) endoscopy because it is a cornerstone for diagnosis and treatment of diseases of the GI tract. About 2.8 million luminal GI (esophageal, stomach, colorectal) cancers are detected globally every year, and although substantial technical improvements in endoscopes have been made over the last 10-15 years, a major limitation of endoscopic examinations remains operator variation. This translates into a substantial inter-observer variation in the detection and assessment of mucosal lesions, causing among other things an average polyp miss-rate of 20% in the colon and thus the subsequent development of a number of post-colonoscopy colorectal cancers. CAD systems might eliminate this variation and lead to more accurate diagnoses. In this editorial, we point out some of the current challenges in the development of efficient computer-based digital assistants. We give examples of proposed tools using various techniques, identify current challenges, and give suggestions for the development and assessment of future CAD systems.


Assuntos
Neoplasias Colorretais/diagnóstico por imagem , Diagnóstico por Computador/métodos , Endoscopia Gastrointestinal/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Humanos , Redes Neurais de Computação , Variações Dependentes do Observador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA