Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 11(1): 158-175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32847940

RESUMO

Agonistic antibodies targeting CD137 have been clinically unsuccessful due to systemic toxicity. Because conferring tumor selectivity through tumor-associated antigen limits its clinical use to cancers that highly express such antigens, we exploited extracellular adenosine triphosphate (exATP), which is a hallmark of the tumor microenvironment and highly elevated in solid tumors, as a broadly tumor-selective switch. We generated a novel anti-CD137 switch antibody, STA551, which exerts agonistic activity only in the presence of exATP. STA551 demonstrated potent and broad antitumor efficacy against all mouse and human tumors tested and a wide therapeutic window without systemic immune activation in mice. STA551 was well tolerated even at 150 mg/kg/week in cynomolgus monkeys. These results provide a strong rationale for the clinical testing of STA551 against a broad variety of cancers regardless of antigen expression, and for the further application of this novel platform to other targets in cancer therapy. SIGNIFICANCE: Reported CD137 agonists suffer from either systemic toxicity or limited efficacy against antigen-specific cancers. STA551, an antibody designed to agonize CD137 only in the presence of extracellular ATP, inhibited tumor growth in a broad variety of cancer models without any systemic toxicity or dependence on antigen expression.See related commentary by Keenan and Fong, p. 20.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Trifosfato de Adenosina , Neoplasias , Animais , Anticorpos Monoclonais/farmacologia , Antígenos de Neoplasias , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral
2.
Nutrients ; 12(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369959

RESUMO

Various berries demonstrate antioxidant activity, and this effect is expected to prevent chronic diseases. We examined whether a diet containing blueberry powder could prevent the development of bladder dysfunction secondary to bladder outlet obstruction (BOO). Eighteen 8-week-old male Sprague-Dawley rats were randomly divided into three groups: Sham (sham operated + normal diet), N-BOO (BOO operated + normal diet) and B-BOO (BOO operated + blueberry diet). Four weeks after BOO surgery, the N-BOO group developed bladder dysfunction with detrusor overactivity. The B-BOO group showed significantly improved micturition volume and micturition interval. The urinary levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) were measured as oxidative stress markers. In the N-BOO group, 8-OHdG increased 1.6-fold and MDA increased 1.3-fold at 4 weeks after surgery, whereas the increase in 8-OHdG was significantly reduced by 1.1-fold, despite a similar increase in MDA, in the B-BOO group. Bladder remodeling was confirmed due to bladder hypertrophy, fibrosis and increased connexin43 expression in the N-BOO group, but these histological changes were reduced in the B-BOO group. The intake of blueberries prevented the development of bladder dysfunction secondary to BOO. This effect seems to be related to antioxidation and the inhibition of bladder remodeling.


Assuntos
Antioxidantes , Mirtilos Azuis (Planta) , Suplementos Nutricionais , Estresse Oxidativo , Fitoterapia , Doenças da Bexiga Urinária/dietoterapia , Doenças da Bexiga Urinária/prevenção & controle , Obstrução do Colo da Bexiga Urinária/complicações , Bexiga Urinária/fisiopatologia , Animais , Conexina 43/metabolismo , Modelos Animais de Doenças , Fibrose , Hipertrofia , Masculino , Ratos Sprague-Dawley , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Doenças da Bexiga Urinária/etiologia , Doenças da Bexiga Urinária/fisiopatologia , Micção
3.
J Bone Miner Res ; 32(3): 434-439, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27606829

RESUMO

Osteoclasts are the exclusive bone-resorbing cells that have a central role in bone homeostasis as well as bone destruction in cancer and autoimmune disease. Both mouse and human genetic studies have clearly proven that receptor activator of NF-κB ligand (RANKL; encoded by the Tnfsf11 gene) and its receptor RANK are essential for osteoclastogenesis. Although there have been several reports on RANKL-independent osteoclastogenesis, previous studies have never provided in vivo evidence showing RANKL can be substituted by other molecules using RANKL- or RANK-deficient genetic backgrounds. Thus, to date, there is no clear evidence of RANKL-independent osteoclastogenesis and no molecule has ever been proven capable of inducing osteoclast differentiation more efficiently than RANKL. Recently, lysyl oxidase (LOX), the enzyme that mediates collagen cross-linking, has been shown to induce human osteoclasts in the absence of RANKL and has a stronger osteoclastogenic activity than RANKL. Here, we investigated the effect of LOX on osteoclast differentiation using RANKL- and RANK-deficient cells to strictly explore RANKL-independent osteoclastogenesis. CD14+ human peripheral blood cells as well as osteoclast precursor cells derived from wild-type, RANKL- and RANK-deficient mice were treated with RANKL and/or LOX in short-term (3 days) or long-term (3 weeks) experimental settings. LOX treatment alone did not result in the formation of tartrate-resistant acid phosphatase (TRAP)+ cells or resorption pits in either short-term or long-term culture. In combination with RANKL, long-term treatment with LOX synergistically promoted osteoclastogenesis in cells derived from wild-type mice; however, this was abrogated in RANKL-deficient cells. Long-term treatment with LOX stimulated RANKL expression in mouse bone marrow stromal cells via the production of reactive oxygen species (ROS). Furthermore, LOX injection failed to rescue the phenotype of RANKL-deficient mice. These results suggest that LOX has the ability to induce RANKL expression on stromal cells; however, it fails to substitute for RANKL in osteoclastogenesis. © 2016 American Society for Bone and Mineral Research.


Assuntos
Osteoclastos/metabolismo , Osteogênese , Proteína-Lisina 6-Oxidase/metabolismo , Ligante RANK/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteína-Lisina 6-Oxidase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA