Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 335: 122252, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37935275

RESUMO

Attention deficit hyperactivity disorder (ADHD) has high incidence rate among children which may be due to excessive monosodium glutamate (MSG) consumption and social isolation (SI). AIM: We aimed to explore the relationships between MSG, SI, and ADHD development and to evaluate the neuroprotective potential of Punicalagin (PUN). METHODS: Eighty male rat pups randomly distributed into eight groups. Group I is the control, and Group II is socially engaged rats treated with PUN. Groups III to VII were exposed to ADHD-inducing factors: Group III to SI, Group IV to MSG, and Group V to both SI and MSG. Furthermore, Groups VI to VIII were the same Groups III to V but additionally received PUN treatment. KEY FINDINGS: Exposure to MSG and/or SI led to pronounced behavioral anomalies, histological changes and indicative of ADHD-like symptoms in rat pups which is accompanied by inhibition of the nuclear factor erythroid 2-related factor 2 (Nrf2)/Heme-oxygenase 1 (HO-1)/Glutathione (GSH) pathway, decline of the brain-derived neurotrophic factor (BDNF) expression and activation of the Toll-like receptor 4 (TLR4)/Nuclear factor kappa B (NF-kB)/NLR Family Pyrin Domain Containing 3 (NLRP3) pathway. This resulted in elevated inflammatory biomarker levels, neuronal apoptosis, and disrupted neurotransmitter equilibrium. Meanwhile, pretreatment with PUN protected against all the previous alterations. SIGNIFICANCE: We established compelling associations between MSG consumption, SI, and ADHD progression. Moreover, we proved that PUN is a promising neuroprotective agent against all risk factors of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estresse Oxidativo , Humanos , Criança , Ratos , Animais , Masculino , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Glutamato de Sódio , Oxirredução , Glutationa/metabolismo , Isolamento Social , Fator 2 Relacionado a NF-E2/metabolismo
2.
BMC Genomics ; 24(1): 476, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612592

RESUMO

BACKGROUND: Tilapia is one of the most essential farmed fishes in the world. It is a tropical and subtropical freshwater fish well adapted to warm water but sensitive to cold weather. Extreme cold weather could cause severe stress and mass mortalities in tilapia. The present study was carried out to investigate the effects of cold stress on the up-regulation of antifreeze protein (AFP) genes in Nile tilapia (Oreochromis niloticus). Two treatment groups of fish were investigated (5 replicates of 15 fish for each group in fibreglass tanks/70 L each): 1) a control group; the fish were acclimated to lab conditions for two weeks and the water temperature was maintained at 25 °C during the whole experimental period with feeding on a commercial diet (30% crude protein). 2) Cold stress group; the same conditions as the control group except for the temperature. Initially, the temperature was decreased by one degree every 12 h. The fish started showing death symptoms when the water temperature reached 6-8 °C. In this stage the tissue (muscle) samples were taken from both groups. The immune response of fish exposed to cold stress was detected and characterized using Differential Display-PCR (DD-PCR). RESULTS: The results indicated that nine different up-regulation genes were detected in the cold-stressed fish compared to the control group. These genes are Integrin-alpha-2 (ITGA-2), Gap junction gamma-1 protein-like (GJC1), WD repeat-containing protein 59 isoform X2 (WDRP59), NUAK family SNF1-like kinase, G-protein coupled receptor-176 (GPR-176), Actin cytoskeleton-regulatory complex protein pan1-like (PAN-1), Whirlin protein (WHRN), Suppressor of tumorigenicity 7 protein isoform X2 (ST7P) and ATP-binding cassette sub-family A member 1-like isoform X2 (ABCA1). The antifreeze gene type-II amplification using a specific PCR product of 600 bp, followed by cloning and sequencing analysis revealed that the identified gene is antifreeze type-II, with similarity ranging from 70 to 95%. The in-vitro transcribed gene induced an antifreeze protein with a molecular size of 22 kDa. The antifreeze gene, ITGA-2 and the WD repeat protein belong to the lectin family (sugar-protein). CONCLUSIONS: In conclusion, under cold stress, Nile tilapia express many defence genes, an antifreeze gene consisting of one open reading frame of approximately 0.6 kbp.


Assuntos
Ciclídeos , Tilápia , Animais , Ciclídeos/genética , Resposta ao Choque Frio/genética , Tilápia/genética , Genes Reguladores , Temperatura Baixa , Conexinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA