Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474037

RESUMO

Protein kinase D (PKD) enzymes play important roles in regulating myocardial contraction, hypertrophy, and remodeling. One of the proteins phosphorylated by PKD is titin, which is involved in myofilament function. In this study, we aimed to investigate the role of PKD in cardiomyocyte function under conditions of oxidative stress. To do this, we used mice with a cardiomyocyte-specific knock-out of Prkd1, which encodes PKD1 (Prkd1loxP/loxP; αMHC-Cre; PKD1 cKO), as well as wild type littermate controls (Prkd1loxP/loxP; WT). We isolated permeabilized cardiomyocytes from PKD1 cKO mice and found that they exhibited increased passive stiffness (Fpassive), which was associated with increased oxidation of titin, but showed no change in titin ubiquitination. Additionally, the PKD1 cKO mice showed increased myofilament calcium (Ca2+) sensitivity (pCa50) and reduced maximum Ca2+-activated tension. These changes were accompanied by increased oxidation and reduced phosphorylation of the small myofilament protein cardiac myosin binding protein C (cMyBPC), as well as altered phosphorylation levels at different phosphosites in troponin I (TnI). The increased Fpassive and pCa50, and the reduced maximum Ca2+-activated tension were reversed when we treated the isolated permeabilized cardiomyocytes with reduced glutathione (GSH). This indicated that myofilament protein oxidation contributes to cardiomyocyte dysfunction. Furthermore, the PKD1 cKO mice exhibited increased oxidative stress and increased expression of pro-inflammatory markers interleukin (IL)-6, IL-18, and tumor necrosis factor alpha (TNF-α). Both oxidative stress and inflammation contributed to an increase in microtubule-associated protein 1 light chain 3 (LC3)-II levels and heat shock response by inhibiting the mammalian target of rapamycin (mTOR) in the PKD1 cKO mouse myocytes. These findings revealed a previously unknown role for PKD1 in regulating diastolic passive properties, myofilament Ca2+ sensitivity, and maximum Ca2+-activated tension under conditions of oxidative stress. Finally, we emphasized the importance of PKD1 in maintaining the balance of oxidative stress and inflammation in the context of autophagy, as well as cardiomyocyte function.


Assuntos
Miofibrilas , Proteína Quinase C , Processamento de Proteína Pós-Traducional , Camundongos , Animais , Conectina/metabolismo , Miofibrilas/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas dos Microfilamentos/metabolismo , Homeostase , Inflamação/metabolismo , Cálcio/metabolismo , Mamíferos/metabolismo
2.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457283

RESUMO

Human wild type (wt) cardiac α-actin and its mutants p.A295S or p.R312H and p.E361G correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by using the baculovirus/Sf21 insect cell system. The c-actin variants inhibited DNase I, indicating maintenance of their native state. Electron microscopy showed the formation of normal appearing actin filaments though they showed mutant specific differences in length and straightness correlating with their polymerization rates. TRITC-phalloidin staining showed that p.A295S and p.R312H exhibited reduced and the p.E361G mutant increased lengths of their formed filaments. Decoration of c-actins with cardiac tropomyosin (cTm) and troponin (cTn) conveyed Ca2+-sensitivity of the myosin-S1 ATPase stimulation, which was higher for the HCM p.A295S mutant and lower for the DCM p.R312H and p.E361G mutants than for wt c-actin. The lower Ca2+-sensitivity of myosin-S1 stimulation by both DCM actin mutants was corrected by the addition of levosimendan. Ca2+-dependency of the movement of pyrene-labeled cTm along polymerized c-actin variants decorated with cTn corresponded to the relations observed for the myosin-S1 ATPase stimulation though shifted to lower Ca2+-concentrations. The N-terminal C0C2 domain of cardiac myosin-binding protein-C increased the Ca2+-sensitivity of the pyrene-cTM movement of bovine, recombinant wt, p.A295S, and p.E361G c-actins, but not of the p.R312H mutant, suggesting decreased affinity to cTm.


Assuntos
Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Citoesqueleto de Actina/genética , Actinas/química , Actinas/genética , Animais , Cálcio , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Bovinos , Humanos , Hipertrofia , Mutação , Miosinas , Tropomiosina/genética
3.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502534

RESUMO

Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient's myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations.


Assuntos
Cardiomiopatias/genética , Mutação de Sentido Incorreto , Miofibrilas/metabolismo , Troponina I/genética , Adenosina Trifosfatases/metabolismo , Adulto , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Catequina/análogos & derivados , Catequina/farmacologia , Humanos , Lactente , Masculino , Microscopia Eletrônica de Transmissão , Miofibrilas/efeitos dos fármacos , Miofibrilas/ultraestrutura , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Índice de Gravidade de Doença , Simendana/farmacologia , Tropomiosina/metabolismo , Troponina I/metabolismo
4.
Antioxidants (Basel) ; 10(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34356314

RESUMO

The human mutant cardiac α-actins p.A295S or p.R312H and p.E361G, correlated with hypertrophic or dilated cardiomyopathy, respectively, were expressed by the baculovirus/Sf21 insect cell system and purified to homogeneity. The purified cardiac actins maintained their native state but showed differences in Ca2+-sensitivity to stimulate the myosin-subfragment1 ATPase. Here we analyzed the interactions of these c-actins with actin-binding and -modifying proteins implicated in cardiomyocyte differentiation. We demonstrate that Arp2/3 complex and the formin mDia3 stimulated the polymerization rate and extent of the c-actins, albeit to different degrees. In addition, we tested the effect of the MICAL-1 monooxygenase, which modifies the supramolecular actin organization during development and adaptive processes. MICAL-1 oxidized these c-actin variants and induced their de-polymerization, albeit at different rates. Transfection experiments using MDCK cells demonstrated the preferable incorporation of wild type and p.A295S c-actins into their microfilament system but of p.R312H and p.E361G actins into the submembranous actin network. Transduction of neonatal rat cardiomyocytes with adenoviral constructs coding HA-tagged c-actin variants showed their incorporation into microfilaments after one day in culture and thereafter into thin filaments of nascent sarcomeric structures at their plus ends (Z-lines) except the p.E361G mutant, which preferentially incorporated at the minus ends.

5.
Cardiovasc Res ; 117(12): 2416-2433, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33483724

RESUMO

Heart failure-either with reduced or preserved ejection fraction (HFrEF/HFpEF)-is a clinical syndrome of multifactorial and gender-dependent aetiology, indicating the insufficiency of the heart to pump blood adequately to maintain blood flow to meet the body's needs. Typical symptoms commonly include shortness of breath, excessive fatigue with impaired exercise capacity, and peripheral oedema, thereby alluding to the fact that heart failure is a syndrome that affects multiple organ systems. Patients suffering from progressed heart failure have a very limited life expectancy, lower than that of numerous cancer types. In this position paper, we provide an overview regarding interactions between the heart and other organ systems, the clinical evidence, underlying mechanisms, potential available or yet-to-establish animal models to study such interactions and finally discuss potential new drug interventions to be developed in the future. Our working group suggests that more experimental research is required to understand the individual molecular mechanisms underlying heart failure and reinforces the urgency for tailored therapeutic interventions that target not only the heart but also other related affected organ systems to effectively treat heart failure as a clinical syndrome that affects and involves multiple organs.


Assuntos
Insuficiência Cardíaca Diastólica/complicações , Insuficiência Cardíaca Sistólica/complicações , Coração/fisiopatologia , Insuficiência de Múltiplos Órgãos/etiologia , Animais , Progressão da Doença , Estado Funcional , Insuficiência Cardíaca Diastólica/mortalidade , Insuficiência Cardíaca Diastólica/fisiopatologia , Insuficiência Cardíaca Diastólica/terapia , Insuficiência Cardíaca Sistólica/mortalidade , Insuficiência Cardíaca Sistólica/fisiopatologia , Insuficiência Cardíaca Sistólica/terapia , Humanos , Insuficiência de Múltiplos Órgãos/mortalidade , Insuficiência de Múltiplos Órgãos/fisiopatologia , Insuficiência de Múltiplos Órgãos/terapia , Medição de Risco , Fatores de Risco
6.
Proteomics Clin Appl ; 15(1): e2000050, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33068073

RESUMO

PURPOSE: Mesenchymal stromal cells (MSC) are an attractive tool for treatment of diabetic cardiomyopathy. Syndecan-2/CD362 has been identified as a functional marker for MSC isolation. Imaging mass spectrometry (IMS) allows for the characterization of therapeutic responses in the left ventricle. This study aims to investigate whether IMS can assess the therapeutic effect of CD362+ -selected MSC on early onset experimental diabetic cardiomyopathy. EXPERIMENTAL DESIGN: 1 × 106 wild type (WT), CD362- , or CD362+ MSC are intravenously injected into db/db mice. Four weeks later, mice are hemodynamically characterized and subsequently sacrificed for IMS combined with bottom-up mass spectrometry, and isoform and phosphorylation analyses of cardiac titin. RESULTS: Overall alterations of the cardiac proteome signatures, especially titin, are observed in db/db compared to control mice. Interestingly, only CD362+ MSC can overcome the reduced titin intensity distribution and shifts the isoform ratio toward the more compliant N2BA form. In contrast, WT and CD362- MSCs improve all-titin phosphorylation and protein kinase G activity, which is reflected in an improvement in diastolic performance. CONCLUSIONS AND CLINICAL RELEVANCE: IMS enables the characterization of differences in titin intensity distribution following MSC application. However, further analysis of titin phosphorylation is needed to allow for the assessment of the therapeutic efficacy of MSC.


Assuntos
Cardiomiopatias Diabéticas/patologia , Células-Tronco Mesenquimais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Humanos , Camundongos
7.
J Transl Med ; 18(1): 470, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298102

RESUMO

BACKGROUND: Cardiomyopathy is a common side effect of doxorubicin (DOX) chemotherapy. Despite intensive research efforts in the field, there is still no evidence available for routine cardioprotective prophylaxis to prevent cardiotoxicity in the majority of oncological patients at low risk of cardiovascular disease. We have recently demonstrated the advantages of a prophylactic, combined heart failure therapy in an experimental model of DOX-induced cardiomyopathy. In the current work, we focus on individually applied prophylactic medications studied in the same translational environment to clarify their distinct roles in the prevention of DOX cardiotoxicity. METHODS: Twelve-week-old male Wistar rats were divided into 5 subgroups. Prophylactic ß-blocker (BB, bisoprolol), angiotensin-converting enzyme inhibitor (ACEI, perindopril) or aldosterone antagonist (AA, eplerenone) treatments were applied 1 week before DOX administration, then 6 cycles of intravenous DOX chemotherapy were administered. Rats receiving only intravenous DOX or saline served as positive and negative controls. Blood pressure, heart rate, body weight, and echocardiographic parameters were monitored in vivo. Two months after the last DOX administration, the animals were sacrificed, and their heart and serum samples were frozen in liquid nitrogen for histological, mechanical, and biochemical measurements. RESULTS: All prophylactic treatments increased the survival of DOX-receiving animals. The lowest mortality rates were seen in the BB and ACEI groups. The left ventricular ejection fraction was only preserved in the BB group. The DOX-induced increase in the isovolumetric relaxation time could not be prevented by any prophylactic treatment. A decreased number of apoptotic nuclei and a preserved myocardial ultrastructure were found in all groups receiving prophylactic cardioprotection, while the DOX-induced fibrotic remodelling and the increase in caspase-3 levels could only be substantially prevented by the BB and ACEI treatments. CONCLUSION: Primary prophylaxis with cardioprotective agents like BB or ACEI has a key role in the prevention of DOX-induced cardiotoxicity in healthy rats. Future human studies are necessary to implement this finding in the clinical management of oncological patients free of cardiovascular risk factors.


Assuntos
Cardiomiopatias , Preparações Farmacêuticas , Animais , Doxorrubicina/efeitos adversos , Humanos , Masculino , Ratos , Ratos Wistar , Volume Sistólico , Função Ventricular Esquerda
8.
Cardiovasc Res ; 116(11): 1820-1834, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32683451

RESUMO

In western countries, cardiovascular (CV) disease and cancer are the leading causes of death in the ageing population. Recent epidemiological data suggest that cancer is more frequent in patients with prevalent or incident CV disease, in particular, heart failure (HF). Indeed, there is a tight link in terms of shared risk factors and mechanisms between HF and cancer. HF induced by anticancer therapies has been extensively studied, primarily focusing on the toxic effects that anti-tumour treatments exert on cardiomyocytes. In this Cardio-Oncology update, members of the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart discuss novel evidence interconnecting cardiac dysfunction and cancer via pathways in which cardiomyocytes may be involved but are not central. In particular, the multiple roles of cardiac stromal cells (endothelial cells and fibroblasts) and inflammatory cells are highlighted. Also, the gut microbiota is depicted as a new player at the crossroads between HF and cancer. Finally, the role of non-coding RNAs in Cardio-Oncology is also addressed. All these insights are expected to fuel additional research efforts in the field of Cardio-Oncology.


Assuntos
Antineoplásicos/efeitos adversos , Cardiopatias/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Cardiotoxicidade , Comunicação Celular , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Mediadores da Inflamação/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Neoplasias/complicações , Neoplasias/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Medição de Risco , Fatores de Risco , Transdução de Sinais
9.
Cardiovasc Res ; 116(11): 1805-1819, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32638021

RESUMO

Vast parts of mammalian genomes are actively transcribed, predominantly giving rise to non-coding RNA (ncRNA) transcripts including microRNAs, long ncRNAs, and circular RNAs among others. Contrary to previous opinions that most of these RNAs are non-functional molecules, they are now recognized as critical regulators of many physiological and pathological processes including those of the cardiovascular system. The discovery of functional ncRNAs has opened up new research avenues aiming at understanding ncRNA-related disease mechanisms as well as exploiting them as novel therapeutics in cardiovascular therapy. In this review, we give an update on the current progress in ncRNA research, particularly focusing on cardiovascular physiological and disease processes, which are under current investigation at the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. This includes a range of topics such as extracellular vesicle-mediated communication, neurohormonal regulation, inflammation, cardiac remodelling, cardio-oncology as well as cardiac development and regeneration, collectively highlighting the wide-spread involvement and importance of ncRNAs in the cardiovascular system.


Assuntos
Cardiopatias/metabolismo , Miocárdio/metabolismo , RNA não Traduzido/metabolismo , Animais , Regulação da Expressão Gênica , Terapia Genética , Cardiopatias/genética , Cardiopatias/fisiopatologia , Cardiopatias/terapia , Humanos , Miocárdio/patologia , RNA não Traduzido/genética , Recuperação de Função Fisiológica , Regeneração , Transdução de Sinais , Função Ventricular Esquerda , Remodelação Ventricular
10.
J Mol Cell Cardiol ; 137: 119-131, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31669609

RESUMO

Coronary microvessel endothelial dysfunction and nitric oxide (NO) depletion contribute to elevated passive tension of cardiomyocytes, diastolic dysfunction and predispose the heart to heart failure with preserved ejection fraction. We examined if diastolic dysfunction at the level of the cardiomyocytes precedes coronary endothelial dysfunction in prediabetes. Further, we determined if myofilaments other than titin contribute to impairment. Utilizing synchrotron microangiography we found young prediabetic male rats showed preserved dilator responses to acetylcholine in microvessels. Utilizing synchrotron X-ray diffraction we show that cardiac relaxation and cross-bridge dynamics are impaired by myosin head displacement from actin filaments particularly in the inner myocardium. We reveal that increased PKC activity and mitochondrial oxidative stress in cardiomyocytes contributes to rho-kinase mediated impairment of myosin head extension to actin filaments, depression of soluble guanylyl cyclase/PKG activity and consequently stiffening of titin in prediabetes ahead of coronary endothelial dysfunction.


Assuntos
Diástole , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Inflamação/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Estado Pré-Diabético/patologia , Estado Pré-Diabético/fisiopatologia , Citoesqueleto de Actina/metabolismo , Animais , Conectina/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Guanilato Ciclase/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Masculino , Complexos Multienzimáticos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miosinas/metabolismo , NADH NADPH Oxirredutases/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Peptídeos/metabolismo , Fosforilação , Ratos Wistar , Superóxidos/metabolismo , Vasodilatação/efeitos dos fármacos
11.
Eur Heart J ; 40(26): 2164-2169, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30891599

RESUMO

AIMS: Haemodynamic load induces cardiac remodelling via mechano-transduction pathways, which can further trigger inflammatory responses. We hypothesized that particularly in an inflammatory disorder such as myocarditis, a therapeutic strategy is required which, in addition to providing adequate circulatory support, unloads the left ventricle, decreases cardiac wall stress, and mitigates inflammatory responses. METHODS AND RESULTS: Axial flow pumps such as the Impella systems comply with these requirements. Here, we report a potential mode-of-action of prolonged Impella support (PROPELLA concept) in fulminant myocarditis, including a decrease in cardiac immune cell presence, and integrin α1, α5, α6, α10 and ß6 expression during unloading. CONCLUSION: PROPELLA may provide benefits beyond its primary function of mechanical circulatory support in the form of additional disease-altering effects, which may contribute to enhanced myocardial recovery/remission in patients with chronic fulminant myocarditis.


Assuntos
Miocardite/terapia , Biópsia , Terapia Combinada , Circulação Extracorpórea/métodos , Humanos , Imunossupressores/uso terapêutico , Modelos Teóricos , Miocardite/etiologia , Miocardite/patologia , Miocardite/fisiopatologia , Miocárdio/patologia , Resultado do Tratamento
12.
Eur Heart J ; 40(44): 3626-3644, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30295807

RESUMO

Acute heart failure (HF) and in particular, cardiogenic shock are associated with high morbidity and mortality. A therapeutic dilemma is that the use of positive inotropic agents, such as catecholamines or phosphodiesterase-inhibitors, is associated with increased mortality. Newer drugs, such as levosimendan or omecamtiv mecarbil, target sarcomeres to improve systolic function putatively without elevating intracellular Ca2+. Although meta-analyses of smaller trials suggested that levosimendan is associated with a better outcome than dobutamine, larger comparative trials failed to confirm this observation. For omecamtiv mecarbil, Phase II clinical trials suggest a favourable haemodynamic profile in patients with acute and chronic HF, and a Phase III morbidity/mortality trial in patients with chronic HF has recently begun. Here, we review the pathophysiological basis of systolic dysfunction in patients with HF and the mechanisms through which different inotropic agents improve cardiac function. Since adenosine triphosphate and reactive oxygen species production in mitochondria are intimately linked to the processes of excitation-contraction coupling, we also discuss the impact of inotropic agents on mitochondrial bioenergetics and redox regulation. Therefore, this position paper should help identify novel targets for treatments that could not only safely improve systolic and diastolic function acutely, but potentially also myocardial structure and function over a longer-term.


Assuntos
Cardiotônicos/uso terapêutico , Acoplamento Excitação-Contração/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Choque Cardiogênico/tratamento farmacológico , Doença Aguda , Animais , Antioxidantes/efeitos adversos , Antioxidantes/uso terapêutico , Cálcio/metabolismo , Cardiotônicos/efeitos adversos , Estudos de Casos e Controles , Catecolaminas/efeitos adversos , Catecolaminas/uso terapêutico , Ensaios Clínicos como Assunto , Diástole/efeitos dos fármacos , Dobutamina/efeitos adversos , Dobutamina/uso terapêutico , Cães , Metabolismo Energético/efeitos dos fármacos , Insuficiência Cardíaca/mortalidade , Humanos , Mitocôndrias/metabolismo , Modelos Animais , Contração Miocárdica/efeitos dos fármacos , Óxidos de Nitrogênio/efeitos adversos , Óxidos de Nitrogênio/uso terapêutico , Oxirredução/efeitos dos fármacos , Inibidores de Fosfodiesterase/efeitos adversos , Inibidores de Fosfodiesterase/uso terapêutico , Placebos/administração & dosagem , Receptores Adrenérgicos/efeitos dos fármacos , Sarcômeros/efeitos dos fármacos , Sarcômeros/metabolismo , Choque Cardiogênico/mortalidade , Simendana/efeitos adversos , Simendana/uso terapêutico , Suínos , Sístole/efeitos dos fármacos , Ureia/efeitos adversos , Ureia/análogos & derivados , Ureia/uso terapêutico
13.
Am J Physiol Heart Circ Physiol ; 316(3): H459-H475, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30525890

RESUMO

Several studies have demonstrated that administration of doxorubicin (DOXO) results in cardiotoxicity, which eventually progresses to dilated cardiomyopathy. The present work aimed to evaluate the early myocardial changes of DOXO-induced cardiotoxicity. Male New Zealand White rabbits were injected intravenously with DOXO twice weekly for 8 wk [DOXO-induced heart failure (DOXO-HF)] or with an equivolumetric dose of saline (control). Echocardiographic evaluation was performed, and myocardial samples were collected to evaluate myocardial cellular and molecular modifications. The DOXO-HF group presented cardiac hypertrophy and higher left ventricular cavity diameters, showing a dilated phenotype but preserved ejection fraction. Concerning cardiomyocyte function, the DOXO-HF group presented a trend toward increased active tension without significant differences in passive tension. The myocardial GSSG-to-GSH ratio and interstitial fibrosis were increased and Bax-to- Bcl-2 ratio presented a trend toward an increase, suggesting the activation of apoptosis signaling pathways. The macromolecule titin shifted toward the more compliant isoform (N2BA), whereas the stiffer one (N2B) was shown to be hypophosphorylated. Differential protein analysis from the aggregate-enriched fraction through gel liquid chromatography-tandem mass spectrometry revealed an increase in the histidine-rich glycoprotein fragment in DOXO-HF animals. This work describes novel and early myocardial effects of DOXO-induced cardiotoxicity. Thus, tracking these changes appears to be of extreme relevance for the early detection of cardiac damage (as soon as ventricular dilation becomes evident) before irreversible cardiac function deterioration occurs (reduced ejection fraction). Moreover, it allows for the adjustment of the therapeutic approach and thus the prevention of cardiomyopathy progression. NEW & NOTEWORTHY Identification of early myocardial effects of doxorubicin in the heart is essential to hinder the development of cardiac complications and adjust the therapeutic approach. This study describes doxorubicin-induced cellular and molecular modifications before the onset of dilated cardiomyopathy. Myocardial samples from doxorubicin-treated rabbits showed a tendency for higher cardiomyocyte active tension, titin isoform shift from N2B to N2BA, hypophosphorylation of N2B, increased apoptotic genes, left ventricular interstitial fibrosis, and increased aggregation of histidine-rich glycoprotein.


Assuntos
Antineoplásicos/toxicidade , Cardiomiopatia Dilatada/metabolismo , Doxorrubicina/toxicidade , Miócitos Cardíacos/metabolismo , Animais , Apoptose , Cardiomiopatia Dilatada/induzido quimicamente , Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiotoxicidade , Células Cultivadas , Conectina/metabolismo , Ecocardiografia , Fibrose , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/efeitos dos fármacos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Coelhos , Proteína X Associada a bcl-2/metabolismo
14.
Eur J Heart Fail ; 20(12): 1690-1700, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30328645

RESUMO

AIMS: Empagliflozin, a clinically used oral antidiabetic drug that inhibits the sodium-dependent glucose co-transporter 2, has recently been evaluated for its cardiovascular safety. Surprisingly, empagliflozin reduced mortality and hospitalization for heart failure (HF) compared to placebo. However, the underlying mechanisms remain unclear. Therefore, our study aims to investigate whether empagliflozin may cause direct pleiotropic effects on the myocardium. METHODS AND RESULTS: In order to assess possible direct myocardial effects of empagliflozin, we performed contractility experiments with in toto-isolated human systolic end-stage HF ventricular trabeculae. Empagliflozin significantly reduced diastolic tension, whereas systolic force was not changed. These results were confirmed in murine myocardium from diabetic and non-diabetic mice, suggesting independent effects from diabetic conditions. In human HF cardiomyocytes, empagliflozin did not influence calcium transient amplitude or diastolic calcium level. The mechanisms underlying the improved diastolic function were further elucidated by studying myocardial fibres from patients and rats with diastolic HF (HF with preserved ejection fraction, HFpEF). Empagliflozin beneficially reduced myofilament passive stiffness by enhancing phosphorylation levels of myofilament regulatory proteins. Intravenous injection of empagliflozin in anaesthetized HFpEF rats significantly improved diastolic function measured by echocardiography, while systolic contractility was unaffected. CONCLUSION: Empagliflozin causes direct pleiotropic effects on the myocardium by improving diastolic stiffness and hence diastolic function. These effects were independent of diabetic conditions. Since pharmacological therapy of diastolic dysfunction and HF is an unmet need, our results provide a rationale for new translational studies and might also contribute to the understanding of the EMPA-REG OUTCOME trial.


Assuntos
Compostos Benzidrílicos/farmacologia , Glucosídeos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Ventrículos do Coração/fisiopatologia , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Biópsia , Diástole , Modelos Animais de Doenças , Ecocardiografia , Feminino , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/efeitos dos fármacos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Ratos Zucker , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
15.
Cardiovasc Res ; 114(10): 1287-1303, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800419

RESUMO

Dilated cardiomyopathy (DCM) frequently affects relatively young, economically, and socially active adults, and is an important cause of heart failure and transplantation. DCM is a complex disease and its pathological architecture encounters many genetic determinants interacting with environmental factors. The old perspective that every pathogenic gene mutation would lead to a diseased heart, is now being replaced by the novel observation that the phenotype depends not only on the penetrance-malignancy of the mutated gene-but also on epigenetics, age, toxic factors, pregnancy, and a diversity of acquired diseases. This review discusses how gene mutations will result in mutation-specific molecular alterations in the heart including increased mitochondrial oxidation (sarcomeric gene e.g. TTN), decreased calcium sensitivity (sarcomeric genes), fibrosis (e.g. LMNA and TTN), or inflammation. Therefore, getting a complete picture of the DCM patient will include genomic data, molecular assessment by preference from cardiac samples, stratification according to co-morbidities, and phenotypic description. Those data will help to better guide the heart failure and anti-arrhythmic treatment, predict response to therapy, develop novel siRNA-based gene silencing for malignant gene mutations, or intervene with mutation-specific altered gene pathways in the heart.This article is part of the Mini Review Series from the Varenna 2017 meeting of the Working Group of Myocardial Function of the European Society of Cardiology.


Assuntos
Cardiomiopatia Dilatada/genética , Mutação , Contração Miocárdica/genética , Sarcômeros/genética , Função Ventricular/genética , Animais , Cardiomiopatia Dilatada/epidemiologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Interação Gene-Ambiente , Predisposição Genética para Doença , Humanos , Miocárdio/patologia , Fenótipo , Prognóstico , Fatores de Risco , Sarcômeros/patologia
16.
Cardiovasc Res ; 114(5): 656-667, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401264

RESUMO

Aims: The heart is constantly challenged with acute bouts of stretching or overload. Systolic adaptations to these challenges are known but adaptations in diastolic stiffness remain unknown. We evaluated adaptations in myocardial stiffness due to acute stretching and characterized the underlying mechanisms. Methods and results: Left ventricles (LVs) of intact rat hearts, rabbit papillary muscles and myocardial strips from cardiac surgery patients were stretched. After stretching, there was a sustained >40% decrease in end-diastolic pressure (EDP) or passive tension (PT) for 15 min in all species and experimental preparations. Stretching by volume loading in volunteers and cardiac surgery patients resulted in E/E' and EDP decreases, respectively, after sustained stretching. Stretched samples had increased myocardial cGMP levels, increased phosphorylated vasodilator-stimulated phosphoprotein phosphorylation, as well as, increased titin phosphorylation, which was reduced by prior protein kinase G (PKG) inhibition (PKGi). Skinned cardiomyocytes from stretched and non-stretched myocardia were studied. Skinned cardiomyocytes from stretched hearts showed decreased PT, which was abrogated by protein phosphatase incubation; whereas those from non-stretched hearts decreased PT after PKG incubation. Pharmacological studies assessed the role of nitric oxide (NO) and natriuretic peptides (NPs). PT decay after stretching was significantly reduced by combined NP antagonism, NO synthase inhibition and NO scavenging, or by PKGi. Response to stretching was remarkably reduced in a rat model of LV hypertrophy, which also failed to increase titin phosphorylation. Conclusions: We describe and translate to human physiology a novel adaptive mechanism, partly mediated by titin phosphorylation through cGMP-PKG signalling, whereby myocardial compliance increases in response to acute stretching. This mechanism may not function in the hypertrophic heart.


Assuntos
Hipertrofia Ventricular Esquerda/metabolismo , Mecanorreceptores/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Músculos Papilares/metabolismo , Função Ventricular Esquerda , Adaptação Fisiológica , Animais , Estudos de Casos e Controles , Moléculas de Adesão Celular/metabolismo , Complacência (Medida de Distensibilidade) , Conectina/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Preparação de Coração Isolado , Masculino , Mecanotransdução Celular , Proteínas dos Microfilamentos/metabolismo , Miócitos Cardíacos/patologia , Músculos Papilares/fisiopatologia , Fosfoproteínas/metabolismo , Fosforilação , Coelhos , Ratos Wistar , Sistemas do Segundo Mensageiro , Pressão Ventricular
17.
Stem Cells Transl Med ; 6(12): 2135-2145, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29024485

RESUMO

Left ventricular (LV) diastolic dysfunction is among others attributed to cardiomyocyte stiffness. Mesenchymal stromal cells (MSC) have cardiac-protective properties. We explored whether intravenous (i.v.) application of PLacenta-eXpanded (PLX) MSC-like cells (PLX) improves LV diastolic relaxation in streptozotocin (STZ)-induced diabetic mice and investigated underlying mechanisms. Diabetes mellitus was induced by STZ application (50 mg/kg body weight) during five subsequent days. One week after the first STZ injection, PLX or saline were i.v. applied. Two weeks later, mice were hemodynamically characterized and sacrificed. At this early stage of diabetic cardiomyopathy with low-grade inflammation and no cardiac fibrosis, PLX reduced LV vascular cell adhesion molecule-1, transforming growth factor-ß1, and interferon-γ mRNA expression, induced the percentage of circulating regulatory T cells, and decreased the splenic pro-fibrotic potential in STZ mice. STZ + PLX mice exhibited higher LV vascular endothelial growth factor mRNA expression and arteriole density versus STZ mice. In vitro, hyperglycemic PLX conditioned medium restored the hyperglycemia-impaired tube formation and adhesion capacity of human umbelical vein endothelial cells (HUVEC) via increasing nitric oxide (NO) bioavailability. PLX further induced the diabetes-downregulated activity of the NO downstream protein kinase G, as well as of protein kinase A, in STZ mice, which was associated with a raise in phosphorylation of the titin isoforms N2BA and N2B. Concomitantly, the passive force was lower in single isolated cardiomyocytes from STZ + PLX versus from STZ mice, which led to an improvement of LV diastolic relaxation. We conclude that i.v. PLX injection improves diabetes mellitus-associated diastolic performance via decreasing cardiomyocyte stiffness. Stem Cells Translational Medicine 2017;6:2135-2145.


Assuntos
Diabetes Mellitus Experimental/terapia , Cardiomiopatias Diabéticas/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Função Ventricular , Animais , Células Cultivadas , Diástole , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Placenta/citologia , Gravidez
18.
Cardiovasc Res ; 113(10): 1161-1172, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472418

RESUMO

AIMS: Concentric hypertrophy following pressure-overload is linked to preserved systolic function but impaired diastolic function, and is an important substrate for heart failure with preserved ejection fraction. While increased passive stiffness of the myocardium is a suggested mechanism underlying diastolic dysfunction in these hearts, the contribution of active diastolic Ca2+ cycling in cardiomyocytes remains unclear. In this study, we sought to dissect contributions of passive and active mechanisms to diastolic dysfunction in the concentrically hypertrophied heart following pressure-overload. METHODS AND RESULTS: Rats were subjected to aortic banding (AB), and experiments were performed 6 weeks after surgery using sham-operated rats as controls. In vivo ejection fraction and fractional shortening were normal, confirming preservation of systolic function. Left ventricular concentric hypertrophy and diastolic dysfunction following AB were indicated by thickening of the ventricular wall, reduced peak early diastolic tissue velocity, and higher E/e' values. Slowed relaxation was also observed in left ventricular muscle strips isolated from AB hearts, during both isometric and isotonic stimulation, and accompanied by increases in passive tension, viscosity, and extracellular collagen. An altered titin phosphorylation profile was observed with hypophosphorylation of the phosphosites S4080 and S3991 sites within the N2Bus, and S12884 within the PEVK region. Increased titin-based stiffness was confirmed by salt-extraction experiments. In contrast, isolated, unloaded cardiomyocytes exhibited accelerated relaxation in AB compared to sham, and less contracture at high pacing frequencies. Parallel enhancement of diastolic Ca2+ handling was observed, with augmented NCX and SERCA2 activity and lowered resting cytosolic [Ca2+]. CONCLUSION: In the hypertrophied heart with preserved systolic function, in vivo diastolic dysfunction develops as cardiac fibrosis and alterations in titin phosphorylation compromise left ventricular compliance, and despite compensatory changes in cardiomyocyte Ca2+ homeostasis.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Adaptação Fisiológica , Animais , Aorta/fisiopatologia , Aorta/cirurgia , Pressão Arterial , Colágeno/metabolismo , Complacência (Medida de Distensibilidade) , Conectina/metabolismo , Constrição , Diástole , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Preparação de Coração Isolado , Masculino , Miocárdio/patologia , Fosforilação , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Sístole , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
19.
Am J Physiol Heart Circ Physiol ; 309(9): H1407-18, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342070

RESUMO

Heart failure with preserved ejection fraction (HFPEF) evolves with the accumulation of risk factors. Relevant animal models to identify potential therapeutic targets and to test novel therapies for HFPEF are missing. We induced hypertension and hyperlipidemia in landrace pigs (n = 8) by deoxycorticosteroneacetate (DOCA, 100 mg/kg, 90-day-release subcutaneous depot) and a Western diet (WD) containing high amounts of salt, fat, cholesterol, and sugar for 12 wk. Compared with weight-matched controls (n = 8), DOCA/WD-treated pigs showed left ventricular (LV) concentric hypertrophy and left atrial dilatation in the absence of significant changes in LV ejection fraction or symptoms of heart failure at rest. The LV end-diastolic pressure-volume relationship was markedly shifted leftward. During simultaneous right atrial pacing and dobutamine infusion, cardiac output reserve and LV peak inflow velocities were lower in DOCA/WD-treated pigs at higher LV end-diastolic pressures. In LV biopsies, we observed myocyte hypertrophy, a shift toward the stiffer titin isoform N2B, and reduced total titin phosphorylation. LV superoxide production was increased, in part attributable to nitric oxide synthase (NOS) uncoupling, whereas AKT and NOS isoform expression and phosphorylation were unchanged. In conclusion, we developed a large-animal model in which loss of LV capacitance was associated with a titin isoform shift and dysfunctional NOS, in the presence of preserved LV ejection fraction. Our findings identify potential targets for the treatment of HFPEF in a relevant large-animal model.


Assuntos
Cardiomiopatias/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Hipertensão/complicações , Hipertrofia Ventricular Esquerda/fisiopatologia , Miócitos Cardíacos/patologia , Volume Sistólico , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Conectina/metabolismo , Acetato de Desoxicorticosterona/toxicidade , Dieta Ocidental , Dilatação Patológica/etiologia , Dilatação Patológica/fisiopatologia , Modelos Animais de Doenças , Feminino , Átrios do Coração/fisiopatologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Hiperlipidemias/induzido quimicamente , Hiperlipidemias/complicações , Hipertensão/induzido quimicamente , Hipertrofia/etiologia , Hipertrofia/patologia , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Mineralocorticoides/toxicidade , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxidos/metabolismo , Suínos
20.
Biophys Rev ; 7(3): 321-341, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28510229

RESUMO

Redox/cysteine modification of proteins that regulate calcium cycling can affect contraction in striated muscles. Understanding the nature of these modifications would present the possibility of enhancing cardiac function through reversible cysteine modification of proteins, with potential therapeutic value in heart failure with diastolic dysfunction. Both heart failure and muscular dystrophy are characterized by abnormal redox balance and nitrosative stress. Recent evidence supports the synergistic role of oxidative stress and inflammation in the progression of heart failure with preserved ejection fraction, in concert with endothelial dysfunction and impaired nitric oxide-cyclic guanosine monophosphate-protein kinase G signalling via modification of the giant protein titin. Although antioxidant therapeutics in heart failure with diastolic dysfunction have no marked beneficial effects on the outcome of patients, it, however, remains critical to the understanding of the complex interactions of oxidative/nitrosative stress with pro-inflammatory mechanisms, metabolic dysfunction, and the redox modification of proteins characteristic of heart failure. These may highlight novel approaches to therapeutic strategies for heart failure with diastolic dysfunction. In this review, we provide an overview of oxidative stress and its effects on pathophysiological pathways. We describe the molecular mechanisms driving oxidative modification of proteins and subsequent effects on contractile function, and, finally, we discuss potential therapeutic opportunities for heart failure with diastolic dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA