Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Infect Public Health ; 16(5): 680-688, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36934642

RESUMO

BACKGROUND: Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. METHODS: A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 6S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. RESULTS: No significant (p > 0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p < 0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7 %) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. CONCLUSIONS: Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.


Assuntos
COVID-19 , Coinfecção , Microbiota , Infecções Respiratórias , Humanos , Arábia Saudita/epidemiologia , SARS-CoV-2 , Nasofaringe , Klebsiella pneumoniae , Obesidade , Infecções Respiratórias/epidemiologia
2.
Cancers (Basel) ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36765601

RESUMO

Epstein Barr Virus (EBV) is implicated in the carcinogenesis of nasopharyngeal carcinoma (NPC) and currently associated with at least 1% of global cancers. The differential prognosis analysis of NPC in EBV genotypes remains to be elucidated. Medical, radiological, pathological, and laboratory reports of 146 NPC patients were collected retrospectively over a 6-year period between 2015 and 2020. From the pathology archives, DNA was extracted from tumor blocks and used for EBV nuclear antigen 3C (EBNA-3C) genotyping by nested polymerase chain reaction (PCR). We found a high prevalence of 96% of EBV infection in NPC patients with a predominance of genotype I detected in 73% of NPC samples. Histopathological examination showed that most of the NPC patients were in the advanced stages of cancer: stage III (38.4%) or stage IV-B (37.7%). Only keratinized squamous cell carcinoma was significantly higher in EBV negative NPC patients compared with those who were EBV positive (OR = 0.01, 95%CI = (0.004-0.32; p = 0.009)), whereas the majority of patients (91.8%) had undifferentiated, non-keratinizing squamous cell carcinoma, followed by differentiated, non-keratinizing squamous cell carcinoma (7.5%). Although NPC had metastasized to 16% of other body sites, it was not associated with EBV infection, except for lung metastasis. A statistically significant reverse association was observed between EBV infection and lung metastasis (OR = 0.07, 95%CI = (0.01-0.51; p = 0.008)). Although 13% of NPC patients died, the overall survival (OS) mean time was 5.59 years. Given the high prevalence of EBV-associated NPC in our population, Saudi could be considered as an area with a high incidence of EBV-associated NPC with a predominance of EBV genotype I. A future multi-center study with a larger sample size is needed to assess the true burden of EBV-associated NPC in Saudi Arabia.

3.
Front Immunol ; 12: 668725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276659

RESUMO

COVID-19 severity due to innate immunity dysregulation accounts for prolonged hospitalization, critical complications, and mortality. Severe SARS-CoV-2 infections involve the complement pathway activation for cytokine storm development. Nevertheless, the role of complement in COVID-19 immunopathology, complement-modulating treatment strategies against COVID-19, and the complement and SARS-CoV-2 interaction with clinical disease outcomes remain elusive. This study investigated the potential changes in complement signaling, and the associated inflammatory mediators, in mild-to-critical COVID-19 patients and their clinical outcomes. A total of 53 patients infected with SARS-CoV-2 were enrolled in the study (26 critical and 27 mild cases), and additional 18 healthy control patients were also included. Complement proteins and inflammatory cytokines and chemokines were measured in the sera of patients with COVID-19 as well as healthy controls by specific enzyme-linked immunosorbent assay. C3a, C5a, and factor P (properdin), as well as interleukin (IL)-1ß, IL-6, IL-8, tumor necrosis factor (TNF)-α, and IgM antibody levels, were higher in critical COVID-19 patients compared to mild COVID-19 patients. Additionally, compared to the mild COVID-19 patients, factor I and C4-BP levels were significantly decreased in the critical COVID-19 patients. Meanwhile, RANTES levels were significantly higher in the mild patients compared to critical patients. Furthermore, the critical COVID-19 intra-group analysis showed significantly higher C5a, C3a, and factor P levels in the critical COVID-19 non-survival group than in the survival group. Additionally, IL-1ß, IL-6, and IL-8 were significantly upregulated in the critical COVID-19 non-survival group compared to the survival group. Finally, C5a, C3a, factor P, and serum IL-1ß, IL-6, and IL-8 levels positively correlated with critical COVID-19 in-hospital deaths. These findings highlight the potential prognostic utility of the complement system for predicting COVID-19 severity and mortality while suggesting that complement anaphylatoxins and inflammatory cytokines are potential treatment targets against COVID-19.


Assuntos
Anafilatoxinas/análise , COVID-19/sangue , COVID-19/mortalidade , Quimiocinas/sangue , Mortalidade Hospitalar , SARS-CoV-2/genética , Índice de Gravidade de Doença , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/virologia , Estudos de Casos e Controles , Síndrome da Liberação de Citocina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
4.
Virol J ; 18(1): 127, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127006

RESUMO

BACKGROUND: In COVID-19 patients, undetected co-infections may have severe clinical implications associated with increased hospitalization, varied treatment approaches and mortality. Therefore, we investigated the implications of viral and bacterial co-infection in COVID-19 clinical outcomes. METHODS: Nasopharyngeal samples were obtained from 48 COVID-19 patients (29% ICU and 71% non-ICU) and screened for the presence of 24 respiratory pathogens using six multiplex PCR panels. RESULTS: We found evidence of co-infection in 34 COVID-19 patients (71%). Influenza A H1N1 (n = 17), Chlamydia pneumoniae (n = 13) and human adenovirus (n = 10) were the most commonly detected pathogens. Viral co-infection was associated with increased ICU admission (r = 0.1) and higher mortality (OR 1.78, CI = 0.38-8.28) compared to bacterial co-infections (OR 0.44, CI = 0.08-2.45). Two thirds of COVID-19 critically ill patients who died, had a co-infection; and Influenza A H1N1 was the only pathogen for which a direct relationship with mortality was seen (r = 0.2). CONCLUSIONS: Our study highlights the importance of screening for co-infecting viruses in COVID-19 patients, that could be the leading cause of disease severity and death. Given the high prevalence of Influenza co-infection in our study, increased coverage of flu vaccination is encouraged to mitigate the transmission of influenza virus during the on-going COVID-19 pandemic and reduce the risk of severe outcome and mortality.


Assuntos
COVID-19/mortalidade , Coinfecção/mortalidade , Influenza Humana/mortalidade , Adulto , Idoso , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/mortalidade , Infecções Bacterianas/patologia , COVID-19/epidemiologia , COVID-19/patologia , Coinfecção/epidemiologia , Coinfecção/patologia , Feminino , Hospitalização , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/patologia , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Nasofaringe/microbiologia , Nasofaringe/virologia , Prevalência , SARS-CoV-2/isolamento & purificação , Arábia Saudita/epidemiologia
5.
Viruses ; 12(5)2020 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370153

RESUMO

The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a lethal zoonotic pathogen circulating in the Arabian Peninsula since 2012. There is no vaccine for MERS and anti-viral treatment is generally not applicable. We investigated the evolution of the MERS-CoV spike gene sequences and changes in viral loads over time from patients in Saudi Arabia from 2105-2017. All the MERS-CoV strains belonged to lineage 5, and showed high sequence homology (99.9%) to 2017 strains. Recombination analysis showed a potential recombination event in study strains from patients in Saudi Arabia. The spike gene showed eight amino acid substitutions, especially between the A1 and B5 lineage, and contained positively selected codon 1020. We also determined that the viral loads were significantly (p < 0.001) higher in fatal cases, and virus shedding was prolonged in some fatal cases beyond 21 days. The viral concentration peaked during the first week of illness, and the lower respiratory specimens had higher levels of MERS-CoV RNA. The presence of the diversifying selection and the topologies with the structural mapping of residues under purifying selection suggested that codon 1020 might have a role in the evolution of spike gene during the divergence of different lineages. This study will im-prove our understanding of the evolution of MERS-CoV, and also highlights the need for enhanced surveillance in humans and dromedaries. The presence of amino acid changes at the N-terminal domain and structural mapping of residues under positive selection at heptad repeat 1 provides better insight into the adaptive evolution of the spike gene and might have a potential role in virus-host tropism and pathogenesis.


Assuntos
Substituição de Aminoácidos/genética , Infecções por Coronavirus/patologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Glicoproteína da Espícula de Coronavírus/genética , Adulto , Idoso , Sequência de Aminoácidos , Animais , Sequência de Bases , Camelus/virologia , Dipeptidil Peptidase 4/metabolismo , Evolução Molecular , Feminino , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Domínios Proteicos/genética , RNA Viral/genética , Receptores Virais/genética , Recombinação Genética/genética , Arábia Saudita , Análise de Sequência de RNA , Homologia de Sequência , Carga Viral , Tropismo Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA