Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36559812

RESUMO

Polymer colloids have remarkable features and are gaining importance in many areas of research including medicinal science. Presently, the innovation of cancer drugs is at the top in the world. Polymer colloids have been used as drug delivery and diagnosis agents in cancer treatment. The polymer colloids may be of different types such as micelles, liposomes, emulsions, cationic carriers, and hydrogels. The current article describes the state-of-the-art polymer colloids for the treatment of cancer. The contents of this article are about the role of polymeric nanomaterials with special emphasis on the different types of colloidal materials and their applications in targeted cancer therapy including cancer diagnoses. In addition, attempts are made to discuss future perspectives. This article will be useful for academics, researchers, and regulatory authorities.

2.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234862

RESUMO

Hydrogen production is produced for future green energy. The radiation-chemical yield for seawater without a catalyst, with Zr, and with Zr1%Nb (Zr = 99% Nb = 1%) were (G(H2) = 0.81, 307.1, and 437.4 molecules/100 eV, respectively. The radiation-thermal water decomposition increased in γ-radiation of the Zr1%Nb + SW system with increasing temperature. At T = 1273 K, it prevails over radiation processes. During the radiation and heat radiation heterogeneous procedures in the Zr1% Nb + SW system, the production of surface energetic sites and secondary electrons accelerated the accumulation of molecular hydrogen and Zr1%Nb oxidation. Thermal radiation and thermal processes caused the metal phase to collect thermal surface energetic sites for water breakdown and Zr 1%Nb oxidation starting at T = 573 K.

3.
Wiad Lek ; 75(12): 3066-3073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36723329

RESUMO

OBJECTIVE: The aim: This study was undertaken to investigatethe possible lung protective potential effect of zileuton during polymicrobial sepsis, through modulation of inflammatory and oxidative stress pathway. PATIENTS AND METHODS: Materials and methods: 24 adult male Swiss-albino mice aged 8-12 weeks, with a weight of 25-35g, were randomized into 4 equal groups n=6, sham (laparotomy without CLP), CLP (laparotomy with CLP), vehicle (equivalent volume of DMSO 1 hour prior to CLP), and Zileuton (5 mg/kg 1 hour prior to CLP) group. After 24 hrs. of sepsis, the lung tissue harvested and used to assess IL-6, IL-1B, IL-17, LTB-4,12(S) HETE and F2-isoprostane as well as histological examination. RESULTS: Results: Lung tissue inflammatory mediators IL-6, IL-1B, IL-17, LTB, 12 (S) HETE) and oxidative stress were carried out via ELISA. Lung tissue levels of IL-6, IL-1B, IL-17, LTB4, 12(S) HETE and oxidative stress (F2 isoprostan)level were significantly higher in sepsis group (p<0.05) as compared with sham group, while zileuton combination showed significant (p<0.05) lower level in these inflammatory mediators and oxidative stress as comparedto sepsis group. Histologically, All mice in sepsis group showed a significant (p<0.05) lung tissue injury, while in zileuton pretreated group showed significantly (p<0.05) reduced lung tissue injury. CONCLUSION: Conclusions: The results of the present study revealed that zileuton has the ability to attenuate lung dysfunction during CLP induced polymicrobial sepsis in male mice through their modulating effects on LTB4,12(S) HETE and oxidative stress downstream signaling pathways and subsequently decreased lungtissue levelsof proinflammatory cytokines (IL-1ß, and IL-6,IL-17).


Assuntos
Endotoxemia , Sepse , Animais , Camundongos , Masculino , Interleucina-17 , Fator de Necrose Tumoral alfa , Interleucina-6 , Leucotrieno B4 , Pulmão/metabolismo , Ácidos Hidroxieicosatetraenoicos
4.
Front Oncol ; 10: 529132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194588

RESUMO

Molecular interaction of aromatic dyes with biological macromolecules are important for the development of minimally invasive disease diagnostic biotechnologies. In the present work, we have used Toluidine Blue (TB) as a model dye, which is a well-known staining agent for the diagnosis of oral cancer and have studied the interaction of various biological macromolecules (protein and DNA) with the dye at different pH. Our spectroscopic studies confirm that TB interacts with Human Serum Albumin (HSA), a model protein at very high pH conditions which is very hard to achieve physiologically. On the other hand, TB significantly interacts with the DNA at physiological pH value (7.4). Our molecular studies strengthen the understanding of the Toluidine Blue staining of cancer cells, where the relative ratio of the nucleic acids is higher than the normal intracellular content. We have also developed a non-invasive, non-contact spectroscopic technique to explore the possibility of quantitatively detecting oral cancer by exploiting the interaction of TB with DNA. We have also reported development of a prototype named "Oral-O-Scope" for the detection of Oral cancer and have carried out human studies using the prototype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA