Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Exp Med ; 221(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930337

RESUMO

B cell acute lymphoblastic leukemia (B-ALL) is a multistep disease characterized by the hierarchical acquisition of genetic alterations. However, the question of how a primary oncogene reprograms stem cell-like properties in committed B cells and leads to a preneoplastic population remains unclear. Here, we used the PAX5::ELN oncogenic model to demonstrate a causal link between the differentiation blockade, the self-renewal, and the emergence of preleukemic stem cells (pre-LSCs). We show that PAX5::ELN disrupts the differentiation of preleukemic cells by enforcing the IL7r/JAK-STAT pathway. This disruption is associated with the induction of rare and quiescent pre-LSCs that sustain the leukemia-initiating activity, as assessed using the H2B-GFP model. Integration of transcriptomic and chromatin accessibility data reveals that those quiescent pre-LSCs lose B cell identity and reactivate an immature molecular program, reminiscent of human B-ALL chemo-resistant cells. Finally, our transcriptional regulatory network reveals the transcription factor EGR1 as a strong candidate to control quiescence/resistance of PAX5::ELN pre-LSCs as well as of blasts from human B-ALL.


Assuntos
Linfoma de Burkitt , Leucemia , Humanos , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Células-Tronco
2.
Haematologica ; 108(6): 1515-1529, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727400

RESUMO

Germline GATA2 mutations predispose to myeloid malignancies resulting from the progressive acquisition of additional somatic mutations. Here we describe clinical and biological features of 78 GATA2-deficient patients. Hematopoietic stem and progenitor cell phenotypic characterization revealed an exhaustion of myeloid progenitors. Somatic mutations in STAG2, ASXL1 and SETBP1 genes along with cytogenetic abnormalities (monosomy 7, trisomy 8, der(1;7)) occurred frequently in patients with GATA2 germline mutations. Patients were classified into three hematopoietic spectra based on bone marrow cytomorphology. No somatic additional mutations were detected in patients with normal bone marrow (spectrum 0), whereas clonal hematopoiesis mediated by STAG2 mutations was frequent in those with a hypocellular and/or myelodysplastic bone marrow without excess blasts (spectrum 1). Finally, SETBP1, RAS pathway and RUNX1 mutations were predominantly associated with leukemic transformation stage (spectrum 2), highlighting their implications in the transformation process. Specific somatic alterations, potentially providing distinct selective advantages to affected cells, are therefore associated with the clinical/hematological evolution of GATA2 syndrome. Our study not only suggests that somatic genetic profiling will help clinicians in their management of patients, but will also clarify the mechanism of leukemogenesis in the context of germline GATA2 mutations.


Assuntos
Deficiência de GATA2 , Transtornos Mieloproliferativos , Humanos , Deficiência de GATA2/diagnóstico , Deficiência de GATA2/genética , Transtornos Mieloproliferativos/genética , Mutação , Medula Óssea , Mutação em Linhagem Germinativa , Fator de Transcrição GATA2/genética
3.
Anesthesiology ; 136(2): 293-313, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965287

RESUMO

BACKGROUND: Mechanical ventilation for pneumonia may contribute to lung injury due to factors that include mitochondrial dysfunction, and mesenchymal stem cells may attenuate injury. This study hypothesized that mechanical ventilation induces immune and mitochondrial dysfunction, with or without pneumococcal pneumonia, that could be mitigated by mesenchymal stem cells alone or combined with antibiotics. METHODS: Male rabbits underwent protective mechanical ventilation (8 ml/kg tidal volume, 5 cm H2O end-expiratory pressure) or adverse mechanical ventilation (20 ml/kg tidal-volume, zero end-expiratory pressure) or were allowed to breathe spontaneously. The same settings were then repeated during pneumococcal pneumonia. Finally, infected animals during adverse mechanical ventilation received human umbilical cord-derived mesenchymal stem cells (3 × 106/kg, intravenous) and/or ceftaroline (20 mg/kg, intramuscular) or sodium chloride, 4 h after pneumococcal challenge. Twenty-four-hour survival (primary outcome), lung injury, bacterial burden, immune and mitochondrial dysfunction, and lung transcriptomes (secondary outcomes) were assessed. RESULTS: High-pressure adverse mechanical ventilation reduced the survival of infected animals (0%; 0 of 7) compared with spontaneous breathing (100%; 7 of 7) and protective mechanical ventilation (86%; 6 of 7; both P < 0.001), with higher lung pathology scores (median [interquartile ranges], 5.5 [4.5 to 7.0] vs. 12.6 [12.0 to 14.0]; P = 0.046), interleukin-8 lung concentrations (106 [54 to 316] vs. 804 [753 to 868] pg/g of lung; P = 0.012), and alveolar mitochondrial DNA release (0.33 [0.28 to 0.36] vs. 0.98 [0.76 to 1.21] ng/µl; P < 0.001) compared with infected spontaneously breathing animals. Survival (0%; 0 of 7; control group) was improved by mesenchymal stem cells (57%; 4 of 7; P = 0.001) or ceftaroline alone (57%; 4 of 7; P < 0.001) and improved even more with a combination treatment (86%; 6 of 7; P < 0.001). Mesenchymal stem cells reduced lung pathology score (8.5 [7.0 to 10.5] vs. 12.6 [12.0 to 14.0]; P = 0.043) and alveolar mitochondrial DNA release (0.39 (0.34 to 0.65) vs. 0.98 (0.76 to 1.21) ng/µl; P = 0.025). Mesenchymal stem cells combined with ceftaroline reduced interleukin-8 lung concentrations (665 [595 to 795] vs. 804 [753 to 868] pg/g of lung; P = 0.007) compared to ceftaroline alone. CONCLUSIONS: In this preclinical study, mesenchymal stem cells improved the outcome of rabbits with pneumonia and high-pressure mechanical ventilation by correcting immune and mitochondrial dysfunction and when combined with the antibiotic ceftaroline was synergistic in mitigating lung inflammation.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Imunidade Celular/fisiologia , Mitocôndrias/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/terapia , Respiração Artificial/efeitos adversos , Animais , Masculino , Células-Tronco Mesenquimais/fisiologia , Mitocôndrias/metabolismo , Pneumonia Pneumocócica/metabolismo , Estudos Prospectivos , Coelhos , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA