Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rep Biochem Mol Biol ; 12(4): 596-608, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39086589

RESUMO

Background: The therapeutic potential of Quercus infectoria (QI) gall, including its anti-inflammatory, antioxidant, and anticancer properties, is well-known. However, its impact on lung, gastric, and esophageal cancer cells remain unclear. This study aims to explore the effects of QI gall aqueous extract on cell viability, apoptosis, and gene expression in A549, BGC823, and KYSE-30 cell lines. Methods: A549, BGC823, and KYSE-30 cells were seeded in complete medium and incubated with different concentrations of QI gall extract for 24 hours. Cell viability was measured by an MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The induction of apoptosis was assessed through flow cytometric analysis after the adding FITC-conjugated Annexin V (Annexin V-FITC) and propidium iodide (PI). The mRNA expression levels of CCND1, TP53, BCL2 and BAX genes were determined using Real-time Quantitative Polymerase Chain Reaction analysis. Results: The MTT assay demonstrated that treatment with QI gall extract significantly reduced the number of viable cells in the A549, BGC823, and KYSE-30 cell lines at IC50 concentrations of 440.1, 437.1, and 465.2 mg/ml, respectively. Additionally, compared to untreated cell population, the percentages of early apoptosis, late apoptosis, and necrosis in the A549, BGC823, and KYSE-30 cells significantly increased following treatment with QI gall extract (P< 0.05). Also, the treatment with QI gall extract influenced the expression of CCND1, TP53, BCL2 and BAX genes. Conclusions: The present findings indicated that the gall extract of QI can inhibit the growth of A549, BGC823, and KYSE-30 cells by inducing apoptosis, which may be mediated via mitochondria-dependent pathway.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5005-5013, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38183449

RESUMO

Cinacalcet is a calcimimetic medicine that has been used to treat secondary hyperparathyroidism and parathyroid cancer. Various studies have proposed the positive role of calcium and its receptor in skin wound healing. Furthermore, Cinacalcet interacts with other skin repair-related mechanisms, including inflammation and nitric oxide pathways. The present study evaluated the effect of Cinacalcet on the random-pattern skin flap survival. Eighty-four Wistar male rats were used. Multiple doses of Cinacalcet (30, 3, 1, 0.3, and 0.05 mg/kg) were used in 3 different routes of administration before the surgery. Histopathological evaluations, quantitative assessment of IL-6, TNF-α, and nitric oxide (NO), and the expression of calcium-sensing receptor (CaSR) and E-cadherin were evaluated in the skin tissue. To assess the role of NO, a NO synthase inhibitor, N-nitro-L-arginine methyl ester hydrochloride (L-NAME), was used, and histopathological effects were investigated. Cinacalcet pretreatment at the IP chronic 1 mg/kg dose significantly increased the skin flap survival rate and enhanced the NO tissue level compared to the control. However, the administration of L-NAME abolished its protective effects. IP Chronic 1 mg/kg of Cinacalcet could also decline the levels of IL-6 and TNF-α and also increase the expression of CaSR and E-cadherin in the flap tissue compared with the control group. Chronic Cinacalcet at 1 mg/kg could improve skin flap survival, probably mediated by the CaSR, NO, and inflammation-related pathways.


Assuntos
Caderinas , Calcimiméticos , Cinacalcete , Interleucina-6 , Óxido Nítrico , Ratos Wistar , Receptores de Detecção de Cálcio , Pele , Animais , Cinacalcete/farmacologia , Cinacalcete/uso terapêutico , Masculino , Óxido Nítrico/metabolismo , Calcimiméticos/farmacologia , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/antagonistas & inibidores , Interleucina-6/metabolismo , Caderinas/metabolismo , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Fator de Necrose Tumoral alfa/metabolismo , Ratos , Retalhos Cirúrgicos/patologia , Cicatrização/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sobrevivência de Enxerto/efeitos dos fármacos
3.
Drug Chem Toxicol ; : 1-10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38058159

RESUMO

Aflatoxins, a group of toxic secondary metabolites produced by Aspergillus species, pose significant threats to human health due to their potent carcinogenic, mutagenic, and immunosuppressive properties. Chronic exposure to these contaminants, commonly found in staple foods such as maize and groundnuts, has been linked to an increased risk of liver cancer, growth impairment, and immune dysfunction. Several agents, such as calcium montmorillonite clay and Lactobacillus rhamnosus GG, have shown promise in reducing aflatoxin bioavailability and alleviating its toxic effects. Additionally, dietary supplements such as chlorophyllin, selenium, and N-acetylcysteine have demonstrated potential as adjuvants to counteract aflatoxin-induced oxidative stress and support liver function. In this treatise, some of the most discussed approaches to mitigating aflatoxin effects are explored in terms of their efficacy, safety, and potential mechanisms of action, which include direct aflatoxin binding, detoxification, cellular antioxidative, and hepatocellular protection properties. However, the effectiveness of these strategies can be influenced by various factors, such as dose, duration of exposure, and individual susceptibility. Therefore, further research is needed to optimize these interventions and develop new, targeted therapies for the prevention and treatment of aflatoxin-related diseases. This review aims to provide a comprehensive analysis of 18 pharmaceutical, nutraceutical, supplement, and probiotic strategies currently available for mitigating the deleterious effects of chronic aflatoxin exposure in humans and animal models.

4.
J Biomater Sci Polym Ed ; 34(13): 1824-1842, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36869798

RESUMO

Application of conventional chemotherapy regardless of its unique effectiveness have been gradually being edged aside due to limited targeting capability, lack of selectivity and chemotherapy-associated side effects. To this end, colon-targeted nanoparticles via combination therapy have shown great therapeutic potential against cancer. Herein, pH/enzyme-responsive biocompatible polymeric nanohydrogels based on poly(methacrylic acid) (PMAA) containing methotrexate (MTX) and chloroquine (CQ) were fabricated. PMAA-MTX-CQ exhibited high drug loading capacity of which MTX was 4.99% and was CQ 25.01% and displayed pH/enzyme-triggered drug release behavior. Higher CQ release rate (76%) under simulated acidic microenvironment of tumor tissue whereas 39% of CQ was released under normal physiological conditions. Intestinally, MTX release was facilitated in the presence of proteinase K enzyme. TEM image demonstrated spherical morphology with particle size of less than 50 nm. In vitro and in vivo toxicity assessments indicated that developed nanoplatforms possessed great biocompatibility. These nanohydrogels did not cause any adverse effects against Artemia Salina and HFF2 cells (around 100% cell viability) which highlight the safety of prepared nanohydrogels. There was no death in mice received different concentrations of nanohydrogel through oral administration and less than 5% hemolysis was found in red blood cells incubated with PMAA nanohydrogels. In vitro anti-cancer results showed that combination therapy based on PMAA-MTX-CQ can effectively suppress the growth of SW480 colon cancer cells (29% cell viability) compared to monotherapy. Altogether, these findings suggest that pH/enzyme-responsive PMAA-MTX-CQ could effectively inhibit cancer cell growth and progression via site-specific delivery of its cargo in a safe and controlled manner.


Assuntos
Neoplasias Colorretais , Nanopartículas , Camundongos , Animais , Metotrexato/farmacologia , Cloroquina/farmacologia , Polímeros , Sistemas de Liberação de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral
5.
Aesthetic Plast Surg ; 46(3): 1452-1462, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35048147

RESUMO

BACKGROUND: Nano-selenium oxide (NSeO) particles are highly noticeable due to their tissue-protective and antioxidant properties. For this purpose, the effect of NSeO was evaluated on skin flap survival and flap oxidative stress markers in rats. Also, another effect of NSeO was investigated on the expression of mTOR and p-mTOR. MATERIALS AND METHODS: Fifty rats were divided into five groups of ten. Skin flap size was 3×8 cm in all groups. Groups were: (1) Sham, (2) Flap Surgery group, (3) Flap Surgery + NSeO, (4) Flap Surgery + Rapamycin (mTOR inhibitor), (5) Flap Surgery + Rapamycin + NSeO. The flap necrosis rate was computed using the paper pattern method on day seven after surgery. After day seven, flap tissues were collected for histological evaluations. Then, malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were measured. Furthermore, the expression levels of mTOR and p-mTOR were measured using the Western blot method. RESULTS: Treatment with NSeO significantly reduced necrosis (P<0.05). It also resulted in a decrease in MDA level (P<0.05). Histologically, NSeO reduced inflammation and increased positive signs of tissue healing (epithelialization, neovascularization, fibroblast migration, and granulation tissue). NSeO increased SOD activity significantly (P<0.05), whereas, using rapamycin reversed these effects. Also, in all groups, mTOR changes were not significant. Additionally, p-mTOR expression was significantly reduced in groups that rapamycin was injected. CONCLUSION: NSeO can reduce flap necrosis and enhance tissue healing in rats. So, it can potentially be used clinically to promote tissue repair significantly, and its effects are independent of the mTOR pathway. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Sirolimo , Serina-Treonina Quinases TOR , Animais , Necrose , Óxidos , Ratos , Óxidos de Selênio , Superóxido Dismutase
6.
Bull Emerg Trauma ; 8(1): 10-18, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32201697

RESUMO

OBJECTIVE: To assess regenerative capacities of chitosan-nanoselenium conduit on transected sciatic nerve in diabetic rats. METHODS: A 10-mm sciatic nerve defect was bridged using a chitosan-nanoselenium conduit filled with phosphate buffered saline. In chitosan group, the chitosan conduit was filled with phosphate buffered saline solution. In sham-operated group, sciatic nerve was exposed and closed. In transected group, right sciatic nerve was transected and nerve cut ends were fixed in the adjacent muscle. The regenerated fibers were studied within 12 weeks after surgery. RESULTS: The behavioral and functional and electrophysiological tests confirmed faster recovery of the regenerated axons in chitosan-nanoselenium conduit group compared to chitosan group (p=0.001). The mean ratios of gastrocnemius muscles weight were measured. There was statistically significant difference between the muscle weight ratios of chitosan-nanoselenium conduit and chitosan groups (p=0.001). Morphometric indices of regenerated fibers showed number and diameter of the myelinated fibers were significantly higher in chitosan-nanoselenium conduit group than in chitosan group. CONCLUSION: chitosan-nanoselenium conduit resulted in acceleration of functional recovery and quantitative morphometric indices of sciatic nerve.

7.
J Pharm Pharmacol ; 69(2): 151-160, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28044342

RESUMO

OBJECTIVES: The pH-sensitive doxorubicin (DOX)-conjugated and docetaxel (DTX)-conjugated poly(lactic acid)-poly(ethylene glycol)-folate (PLA-PEG-FOL)-based polymeric micelles were developed and characterized in this study. KEY FINDINGS: The drugs were released from the micelles (particle size, ~185 nm) in a pH-dependent manner. The drug-conjugated PLA-PEG-FOL micelles showed higher cellular uptake than nontargeting ones. Single agent and combination in-vitro cytotoxicity studies were also performed using the two drugs in both free and their micellar forms in SKOV3 human ovarian cancer cells using three different cytotoxicity assays. Like the free drugs, DOX-conjugated and DTX-conjugated targeting micelles showed significant cytotoxic effects in SKOV3 cell line. Moreover, the drug-conjugated targeting micelles improved cytotoxicity compared to the FOL-free ones. Different ratios of IC50 of free drugs were used for combination therapy, and synergistic, additive or antagonistic effects were evaluated. The synergistic effect was observed in specific DOX : DTX mixing ratios, which result in the increase in therapeutic efficacy using low doses of each test compound without formulation related side effects. CONCLUSIONS: The prepared micelles may provide appropriate delivery systems for doxorubicin and docetaxel in both single and combination therapies.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Ácido Fólico/análogos & derivados , Micelas , Poliésteres/química , Polietilenoglicóis/química , Taxoides/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Docetaxel , Doxorrubicina/química , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Ácido Fólico/química , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Taxoides/química , Taxoides/farmacocinética
8.
Daru ; 22: 30, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24602477

RESUMO

BACKGROUND: Selective delivery of anticancer agents to target areas in the body is desirable to minimize the side effects while maximizing the therapeutic efficacy. Anthracycline antibiotics such as doxorubicin (DOX) are widely used for treatment of a wide variety of solid tumors.This study evaluated the potential of a polymeric micellar formulation of doxorubicin as a nanocarrier system for targeted therapy of a folate-receptor positive human ovarian cancer cell in line. RESULTS: DOX-conjugated targeting and non-targeting micelles prepared by the dialysis method were about 188 and 182 nm in diameter, respectively and their critical micelle concentration was 9.55 µg/ml. The DOX-conjugated micelles exhibited a potent cytotoxicity against SKOV3 human ovarian cancer cells. Moreover, the targeting micelles showed higher cytotoxicity than that of non-targeting ones (IC50= 4.65 µg/ml vs 13.51 µg/ml). CONCLUSION: The prepared micelle is expected to increase the efficacy of DOX against cancer cells and reduce its side effects.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Feminino , Ácido Fólico/química , Humanos , Micelas , Neoplasias Ovarianas/patologia , Tamanho da Partícula , Polietilenoglicóis/síntese química , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
9.
Colloids Surf B Biointerfaces ; 116: 309-17, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24503352

RESUMO

pH-responsive docetaxel-conjugated poly (lactic acid) (PLA)-polyethyleneglycol (PEG) micellar formulation was synthesized via acid labile hydrazone linkage. Levulinic acid (LEV) was used as a linker between docetaxel (DTX) and hydrazine. Targeted delivery of DTX was achieved by conjugation of folate to PEG segment. The DTX conjugated polymeric micelles were about 181 nm in diameter and their critical micelle concentration was 5.18 µg/ml. DTX was released from micelles in a pH-dependent manner. The results showed a significant difference in DTX release from polymeric micelles at pH 5.0 and pH 7.4. Cytotoxicity assays using methyl tetrazolium (MTT), neutral red (NR) and lactate dehydrogenase (LDH) demonstrated a decreased cytotoxic activity of the drug containing nanoconjugate compared with free DTX that appears to be contributed to the sustained release of drug from micelles. Based on these results, it is expected that this pH-responsive nanoconjugate is promising as a useful carrier for targeted delivery of anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Ácido Láctico/química , Polietilenoglicóis/química , Polímeros/química , Taxoides/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Docetaxel , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Micelas , Estrutura Molecular , Poliésteres , Relação Estrutura-Atividade , Taxoides/administração & dosagem , Taxoides/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA