Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Cancer ; 5(5): 760-773, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503896

RESUMO

Chimeric antigen receptor T cells have dramatically improved the treatment of hematologic malignancies. T cell antigen receptor (TCR)-based cell therapies are yet to achieve comparable outcomes. Importantly, chimeric antigen receptors not only target selected antigens but also reprogram T cell functions through the co-stimulatory pathways that they engage upon antigen recognition. We show here that a fusion receptor comprising the CD80 ectodomain and the 4-1BB cytoplasmic domain, termed 80BB, acts as both a ligand and a receptor to engage the CD28 and 4-1BB pathways, thereby increasing the antitumor potency of human leukocyte antigen-independent TCR (HIT) receptor- or TCR-engineered T cells and tumor-infiltrating lymphocytes. Furthermore, 80BB serves as a switch receptor that provides agonistic 4-1BB co-stimulation upon its ligation by the inhibitory CTLA4 molecule. By combining multiple co-stimulatory features in a single antigen-agnostic synthetic receptor, 80BB is a promising tool to sustain CD3-dependent T cell responses in a wide range of targeted immunotherapies.


Assuntos
Antígenos CD28 , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Antígenos CD28/imunologia , Animais , Camundongos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Antígeno B7-1/imunologia , Linfócitos T/imunologia , Antígeno CTLA-4/imunologia , Linfócitos do Interstício Tumoral/imunologia , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos
2.
Sci Immunol ; 8(81): eadf1426, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36867678

RESUMO

Chimeric antigen receptor (CAR) T cell therapy relies on T cells that are guided by synthetic receptors to target and lyse cancer cells. CARs bind to cell surface antigens through an scFv (binder), the affinity of which is central to determining CAR T cell function and therapeutic success. CAR T cells targeting CD19 were the first to achieve marked clinical responses in patients with relapsed/refractory B cell malignancies and to be approved by the U.S. Food and Drug Administration (FDA). We report cryo-EM structures of CD19 antigen with the binder FMC63, which is used in four FDA-approved CAR T cell therapies (Kymriah, Yescarta, Tecartus, and Breyanzi), and the binder SJ25C1, which has also been used extensively in multiple clinical trials. We used these structures for molecular dynamics simulations, which guided creation of lower- or higher-affinity binders, and ultimately produced CAR T cells endowed with distinct tumor recognition sensitivities. The CAR T cells exhibited different antigen density requirements to trigger cytolysis and differed in their propensity to prompt trogocytosis upon contacting tumor cells. Our work shows how structural information can be applied to tune CAR T cell performance to specific target antigen densities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Estados Unidos , Humanos , Antígenos de Superfície , Linfócitos B , Morte Celular
3.
Cancer Discov ; 13(4): 829-843, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961206

RESUMO

The success of chimeric antigen receptor (CAR) T cells targeting B-cell malignancies propelled the field of synthetic immunology and raised hopes to treat solid tumors in a similar fashion. Antigen escape and the paucity of tumor-restricted CAR targets are recognized challenges to fulfilling this prospect. Recent advances in CAR T cell engineering extend the toolbox of chimeric receptors available to calibrate antigen sensitivity and combine receptors to create adapted tumor-sensing T cells. Emerging engineering strategies to lower the threshold for effective antigen recognition, when needed, and enable composite antigen recognition hold great promise for overcoming tumor heterogeneity and curbing off-tumor toxicities. SIGNIFICANCE: Improving the clinical efficacy of CAR T cell therapies will require engineering T cells that overcome heterogeneous and low-abundance target expression while minimizing reactivity to normal tissues. Recent advances in CAR design and logic gating are poised to extend the success of CAR T cell therapies beyond B-cell malignancies.


Assuntos
Neoplasias , Linfócitos T , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia Adotiva/métodos , Antígenos de Neoplasias , Resultado do Tratamento , Receptores de Antígenos de Linfócitos T
4.
Nat Biomed Eng ; 6(11): 1284-1297, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35941192

RESUMO

The production of autologous T cells expressing a chimaeric antigen receptor (CAR) is time-consuming, costly and occasionally unsuccessful. T-cell-derived induced pluripotent stem cells (TiPS) are a promising source for the generation of 'off-the-shelf' CAR T cells, but the in vitro differentiation of TiPS often yields T cells with suboptimal features. Here we show that the premature expression of the T-cell receptor (TCR) or a constitutively expressed CAR in TiPS promotes the acquisition of an innate phenotype, which can be averted by disabling the TCR and relying on the CAR to drive differentiation. Delaying CAR expression and calibrating its signalling strength in TiPS enabled the generation of human TCR- CD8αß+ CAR T cells that perform similarly to CD8αß+ CAR T cells from peripheral blood, achieving effective tumour control on systemic administration in a mouse model of leukaemia and without causing graft-versus-host disease. Driving T-cell maturation in TiPS in the absence of a TCR by taking advantage of a CAR may facilitate the large-scale development of potent allogeneic CD8αß+ T cells for a broad range of immunotherapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Receptores de Antígenos Quiméricos , Camundongos , Animais , Humanos , Linfócitos T , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores de Antígenos de Linfócitos T , Antígenos CD8/metabolismo , Receptores de Antígenos Quiméricos/metabolismo
6.
Nat Med ; 28(2): 345-352, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35027758

RESUMO

Chimeric antigen receptors (CARs) are receptors for antigen that direct potent immune responses. Tumor escape associated with low target antigen expression is emerging as one potential limitation of their efficacy. Here we edit the TRAC locus in human peripheral blood T cells to engage cell-surface targets through their T cell receptor-CD3 complex reconfigured to utilize the same immunoglobulin heavy and light chains as a matched CAR. We demonstrate that these HLA-independent T cell receptors (HIT receptors) consistently afford high antigen sensitivity and mediate tumor recognition beyond what CD28-based CARs, the most sensitive design to date, can provide. We demonstrate that the functional persistence of HIT T cells can be augmented by constitutive coexpression of CD80 and 4-1BBL. Finally, we validate the increased antigen sensitivity afforded by HIT receptors in xenograft mouse models of B cell leukemia and acute myeloid leukemia, targeting CD19 and CD70, respectively. Overall, HIT receptors are well suited for targeting cell surface antigens of low abundance.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Animais , Antígenos CD19 , Antígenos de Histocompatibilidade , Humanos , Imunoterapia Adotiva , Camundongos , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Front Immunol ; 12: 674276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566953

RESUMO

Adoptive immunotherapy based on the transfer of anti-tumor cytotoxic T lymphocytes (CTLs) is a promising strategy to cure cancers. However, rapid expansion of numerous highly functional CTLs with long-lived features remains a challenge. Here, we constructed NIH/3T3 mouse fibroblast-based artificial antigen presenting cells (AAPCs) and precisely evaluated their ability to circumvent this difficulty. These AAPCs stably express the essential molecules involved in CTL activation in the HLA-A*0201 context and an immunogenic HLA-A*0201 restricted analogue peptide derived from MART-1, an auto-antigen overexpressed in melanoma. Using these AAPCs and pentamer-based magnetic bead-sorting, we defined, in a preclinical setting, the optimal conditions to expand pure MART-1-specific CTLs. Numerous highly purified MART-1-specific CTLs were rapidly obtained from healthy donors and melanoma patients. Both TCR repertoire and CDR3 sequence analyses revealed that MART-1-specific CTL responses were similar to those reported in the literature and obtained with autologous or allogeneic presenting cells. These MART-1-specific CTLs were highly cytotoxic against HLA-A*0201+ MART-1+ tumor cells. Moreover, they harbored a suitable phenotype for immunotherapy, with effector memory, central memory and, most importantly, stem cell-like memory T cell features. Notably, the cells harboring stem cell-like memory phenotype features were capable of self-renewal and of differentiation into potent effector anti-tumor T cells. These "off-the-shelf" AAPCs represent a unique tool to rapidly and easily expand large numbers of long-lived highly functional pure specific CTLs with stem cell-like memory T cell properties, for the development of efficient adoptive immunotherapy strategies against cancers.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Técnicas de Cultura de Células/métodos , Imunoterapia Adotiva/métodos , Melanoma , Linfócitos T Citotóxicos/imunologia , Animais , Humanos , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Antígeno MART-1/imunologia , Camundongos , Células NIH 3T3
8.
Nat Rev Clin Oncol ; 18(6): 379-393, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33633361

RESUMO

Patient-derived T cells genetically reprogrammed to express CD19-specific chimeric antigen receptors (CARs) have shown remarkable clinical responses and are commercially available for the treatment of patients with certain advanced-stage B cell malignancies. Nonetheless, several trials have revealed pre-existing and/or treatment-induced immune responses to the mouse-derived single-chain variable fragments included in these constructs. These responses might have contributed to both treatment failure and the limited success of redosing strategies observed in some patients. Data from early phase clinical trials suggest that CAR T cells are also associated with immunogenicity-related events in patients with solid tumours. Generally, the clinical implications of anti-CAR immune responses are poorly understood and highly variable between different CAR constructs and malignancies. These observations highlight an urgent need to uncover the mechanisms of immunogenicity in patients receiving CAR T cells and develop validated assays to enable clinical detection. In this Review, we describe the current clinical evidence of anti-CAR immune responses and discuss how new CAR T cell technologies might impact the risk of immunogenicity. We then suggest ways to reduce the risks of anti-CAR immune responses to CAR T cell products that are advancing towards the clinic. Finally, we summarize measures that investigators could consider in order to systematically monitor and better comprehend the possible effects of immunogenicity during trials involving CAR T cells as well as in routine clinical practice.


Assuntos
Imunoterapia Adotiva/efeitos adversos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Antígenos CD19/imunologia , Ensaios Clínicos como Assunto , Edição de Genes/métodos , Humanos , Imunidade Celular , Mutação , Receptores de Antígenos Quiméricos/genética , Falha de Tratamento
9.
IDCases ; 21: e00881, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670791

RESUMO

A young man with aortic prosthetic valve replacement, presented with prolonged fever and diagnosed with brucella endocarditis based on positive transthoracic echo findings with high titer positive brucellacapt serology. He was started on medical treatment with doxycycline and rifampin to which gentamicin and ceftriaxone were added and he was planned for surgical intervention. Unfortunately, the patient developed cardiogenic with septic shock before performing surgery and died within 24 h soon after admission.

10.
Cancer Immunol Immunother ; 68(10): 1561-1572, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31494742

RESUMO

Preclinical and clinical studies have suggested that cancer treatment with antitumor antibodies induces a specific adaptive T cell response. A central role in this process has been attributed to CD4+ T cells, but the relevant T cell epitopes, mostly derived from non-mutated self-antigens, are largely unknown. In this study, we have characterized human CD20-derived epitopes restricted by HLA-DR1, HLA-DR3, HLA-DR4, and HLA-DR7, and investigated whether T cell responses directed against CD20-derived peptides can be elicited in human HLA-DR-transgenic mice and human samples. Based on in vitro binding assays to recombinant human MHC II molecules and on in vivo immunization assays in H-2 KO/HLA-A2+-DR1+ transgenic mice, we have identified 21 MHC II-restricted long peptides derived from intracellular, membrane, or extracellular domains of the human non-mutated CD20 protein that trigger in vitro IFN-γ production by PBMCs and splenocytes from healthy individuals and by PBMCs from follicular lymphoma patients. These CD20-derived MHC II-restricted peptides could serve as a therapeutic tool for improving and/or monitoring anti-CD20 T cell activity in patients treated with rituximab or other anti-CD20 antibodies.


Assuntos
Antígenos CD20/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfoma/tratamento farmacológico , Animais , Feminino , Cadeias HLA-DRB1/imunologia , Humanos , Interferon gama/biossíntese , Linfoma/imunologia , Camundongos , Rituximab/uso terapêutico
11.
Nature ; 568(7750): 112-116, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918399

RESUMO

Chimeric antigen receptors (CARs) are synthetic antigen receptors that reprogram T cell specificity, function and persistence1. Patient-derived CAR T cells have demonstrated remarkable efficacy against a range of B-cell malignancies1-3, and the results of early clinical trials suggest activity in multiple myeloma4. Despite high complete response rates, relapses occur in a large fraction of patients; some of these are antigen-negative and others are antigen-low1,2,4-9. Unlike the mechanisms that result in complete and permanent antigen loss6,8,9, those that lead to escape of antigen-low tumours remain unclear. Here, using mouse models of leukaemia, we show that CARs provoke reversible antigen loss through trogocytosis, an active process in which the target antigen is transferred to T cells, thereby decreasing target density on tumour cells and abating T cell activity by promoting fratricide T cell killing and T cell exhaustion. These mechanisms affect both CD28- and 4-1BB-based CARs, albeit differentially, depending on antigen density. These dynamic features can be offset by cooperative killing and combinatorial targeting to augment tumour responses to immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Leucemia/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Evasão Tumoral/imunologia , Ligante 4-1BB/imunologia , Animais , Antígenos CD28/imunologia , Citotoxicidade Imunológica , Feminino , Imunoterapia Adotiva , Leucemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Recidiva Local de Neoplasia/imunologia , Linfócitos T/citologia
12.
Nat Med ; 25(1): 82-88, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559421

RESUMO

Chimeric antigen receptors (CARs) are synthetic receptors that target and reprogram T cells to acquire augmented antitumor properties1. CD19-specific CARs that comprise CD28 and CD3ζ signaling motifs2 have induced remarkable responses in patients with refractory leukemia3-5 and lymphoma6 and were recently approved by the US Food and Drug Administration7. These CARs program highly performing effector functions that mediate potent tumor elimination4,8 despite the limited persistence they confer on T cells3-6,8. Extending their functional persistence without compromising their potency should improve current CAR therapies. Strong T cell activation drives exhaustion9,10, which may be accentuated by the redundancy of CD28 and CD3ζ signaling11,12 as well as the spatiotemporal constraints imparted by the structure of second-generation CARs2. Thus, we hypothesized that calibrating the activation potential of CD28-based CARs would differentially reprogram T cell function and differentiation. Here, we show that CARs encoding a single immunoreceptor tyrosine-based activation motif direct T cells to different fates by balancing effector and memory programs, thereby yielding CAR designs with enhanced therapeutic profiles.


Assuntos
Linhagem da Célula , Imunoterapia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Animais , Calibragem , Linhagem Celular , Masculino , Camundongos , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/química
13.
Mol Ther ; 26(11): 2542-2552, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30415658

RESUMO

CD19 chimeric antigen receptors (CARs) have demonstrated great efficacy against a range of B cell malignancies. However, antigen escape and, more generally, heterogeneous antigen expression pose a challenge to applying CAR therapy to a wide range of cancers. We find that low-dose radiation sensitizes tumor cells to immune rejection by locally activated CAR T cells. In a model of pancreatic adenocarcinoma heterogeneously expressing sialyl Lewis-A (sLeA), we show that not only sLeA+ but also sLeA- tumor cells exposed to low-dose radiation become susceptible to CAR therapy, reducing antigen-negative tumor relapse. RNA sequencing analysis of low-dose radiation-exposed tumors reveals the transcriptional signature of cells highly sensitive to TRAIL-mediated death. We find that sLeA-targeted CAR T cells produce TRAIL upon engaging sLeA+ tumor cells, and eliminate sLeA- tumor cells previously exposed to systemic or local low-dose radiation in a TRAIL-dependent manner. These findings enhance the prospects for successfully applying CAR therapy to heterogeneous solid tumors. Local radiation is integral to many tumors' standard of care and can be easily implemented as a CAR conditioning regimen.


Assuntos
Antígenos CD19/uso terapêutico , Imunoterapia Adotiva , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/radioterapia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Animais , Antígenos CD19/imunologia , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/efeitos da radiação , Antígeno CA-19-9 , Terapia Combinada , Modelos Animais de Doenças , Humanos , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/efeitos da radiação , Camundongos , Oligossacarídeos/química , Oligossacarídeos/imunologia , Oligossacarídeos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Radiação , Doses de Radiação , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Análise de Sequência de RNA , Ligante Indutor de Apoptose Relacionado a TNF/imunologia
14.
Trends Mol Med ; 24(9): 729-731, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30149852

RESUMO

In a recent study, Fraietta and colleagues identified chimeric antigen receptor (CAR) T cell biomarkers that may predict the success or failure of CAR therapy in patients with refractory chronic lymphoblastic leukemia (CLL). These findings open new prospects for improving T cell product manufacturing and the management of patients with CLL undergoing T cell-based therapies.


Assuntos
Imunoterapia Adotiva , Leucemia Linfocítica Crônica de Células B/imunologia , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos
15.
Nat Med ; 24(6): 731-738, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29808005

RESUMO

Chimeric antigen receptor (CAR) therapy targeting CD19 is an effective treatment for refractory B cell malignancies, especially acute lymphoblastic leukemia (ALL) 1 . Although a majority of patients will achieve a complete response following a single infusion of CD19-targeted CAR-modified T cells (CD19 CAR T cells)2-4, the broad applicability of this treatment is hampered by severe cytokine release syndrome (CRS), which is characterized by fever, hypotension and respiratory insufficiency associated with elevated serum cytokines, including interleukin-6 (IL-6)2,5. CRS usually occurs within days of T cell infusion at the peak of CAR T cell expansion. In ALL, it is most frequent and more severe in patients with high tumor burden2-4. CRS may respond to IL-6 receptor blockade but can require further treatment with high dose corticosteroids to curb potentially lethal severity2-9. Improved therapeutic and preventive treatments require a better understanding of CRS physiopathology, which has so far remained elusive. Here we report a murine model of CRS that develops within 2-3 d of CAR T cell infusion and that is potentially lethal and responsive to IL-6 receptor blockade. We show that its severity is mediated not by CAR T cell-derived cytokines, but by IL-6, IL-1 and nitric oxide (NO) produced by recipient macrophages, which enables new therapeutic interventions.


Assuntos
Citocinas/metabolismo , Imunoterapia Adotiva , Interleucina-1/antagonistas & inibidores , Macrófagos/metabolismo , Animais , Humanos , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-1/metabolismo , Camundongos , Células Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Síndrome
16.
Cancer Cell ; 32(4): 506-519.e5, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-29017060

RESUMO

Chimeric antigen receptor (CAR) therapy targeting CD19 has yielded remarkable outcomes in patients with acute lymphoblastic leukemia. To identify potential CAR targets in acute myeloid leukemia (AML), we probed the AML surfaceome for overexpressed molecules with tolerable systemic expression. We integrated large transcriptomics and proteomics datasets from malignant and normal tissues, and developed an algorithm to identify potential targets expressed in leukemia stem cells, but not in normal CD34+CD38- hematopoietic cells, T cells, or vital tissues. As these investigations did not uncover candidate targets with a profile as favorable as CD19, we developed a generalizable combinatorial targeting strategy fulfilling stringent efficacy and safety criteria. Our findings indicate that several target pairings hold great promise for CAR therapy of AML.


Assuntos
Antígenos CD19 , Perfilação da Expressão Gênica , Imunoterapia/métodos , Leucemia Mieloide Aguda/terapia , Proteômica , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/metabolismo
17.
Oncotarget ; 8(30): 48959-48971, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28430664

RESUMO

HLA-A*0201/DRB1*0101 transgenic mice (A2/DR1 mice) have been developed to study the immunogenicity of tumor antigen-derived T cell epitopes. To extend the use and application of this mouse model in the field of antitumor immunotherapy, we described a tumor cell line generated from a naturally occurring tumor in A2/DR1 mouse named SARC-L1. Histological and genes signature analysis supported the sarcoma origin of this cell line. While SARC-L1 tumor cells lack HLA-DRB1*0101 expression, a very low expression of HLA-A*0201 molecules was found on these cells. Furthermore they also weakly but constitutively expressed the programmed death-ligand 1 (PD-L1). Interestingly both HLA-A*0201 and PD-L1 expressions can be increased on SARC-L1 after IFN-γ exposure in vitro. We also obtained two genetically modified cell lines highly expressing either HLA-A*0201 or both HLA-A*0201/ HLA-DRB1*0101 molecules referred as SARC-A2 and SARC-A2DR1 respectively. All the SARC-L1-derived cell lines induced aggressive subcutaneous tumors in A2DR1 mice in vivo. The analysis of SARC-L1 tumor microenvironment revealed a strong infiltration by T cells expressing inhibitory receptors such as PD-1 and TIM-3. Finally, we found that SARC-L1 is sensitive to several drugs commonly used to treat sarcoma and also susceptible to anti-PD-L1 monoclonal antibody therapy in vivo. Collectively, we described a novel syngeneic tumor model A2/DR1 mice that could be used as preclinical tool for the evaluation of antitumor immunotherapies.


Assuntos
Antígeno B7-H1/genética , Antígeno HLA-A2/genética , Cadeias HLA-DRB1/genética , Neoplasias/genética , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/imunologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Antígeno HLA-A2/imunologia , Cadeias HLA-DRB1/imunologia , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Sarcoma/genética , Sarcoma/metabolismo , Sarcoma/patologia
18.
Nature ; 543(7643): 113-117, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28225754

RESUMO

Chimeric antigen receptors (CARs) are synthetic receptors that redirect and reprogram T cells to mediate tumour rejection. The most successful CARs used to date are those targeting CD19 (ref. 2), which offer the prospect of complete remission in patients with chemorefractory or relapsed B-cell malignancies. CARs are typically transduced into the T cells of a patient using γ-retroviral vectors or other randomly integrating vectors, which may result in clonal expansion, oncogenic transformation, variegated transgene expression and transcriptional silencing. Recent advances in genome editing enable efficient sequence-specific interventions in human cells, including targeted gene delivery to the CCR5 and AAVS1 loci. Here we show that directing a CD19-specific CAR to the T-cell receptor α constant (TRAC) locus not only results in uniform CAR expression in human peripheral blood T cells, but also enhances T-cell potency, with edited cells vastly outperforming conventionally generated CAR T cells in a mouse model of acute lymphoblastic leukaemia. We further demonstrate that targeting the CAR to the TRAC locus averts tonic CAR signalling and establishes effective internalization and re-expression of the CAR following single or repeated exposure to antigen, delaying effector T-cell differentiation and exhaustion. These findings uncover facets of CAR immunobiology and underscore the potential of CRISPR/Cas9 genome editing to advance immunotherapies.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Imunoterapia/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD19/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Loci Gênicos/genética , Humanos , Ativação Linfocitária , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Regiões Promotoras Genéticas/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/citologia , Linfócitos T/metabolismo , Pesquisa Translacional Biomédica
19.
Oncotarget ; 7(47): 76902-76919, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27708227

RESUMO

T-cell immunotherapies are promising options in relapsed/refractory B-precursor acute lymphoblastic leukemia (ALL). We investigated the effect of co-signaling molecules on T-cell attack against leukemia mediated by CD19/CD3-bispecific T-cell engager. Primary CD19+ ALL blasts (n≥10) and physiologic CD19+CD10+ bone marrow precursors were screened for 20 co-signaling molecules. PD-L1, PD-1, LAG-3, CD40, CD86, CD27, CD70 and HVEM revealed different stimulatory and inhibitory profiles of pediatric ALL compared to physiologic cells, with PD-L1 and CD86 as most prominent inhibitory and stimulatory markers. PD-L1 was increased in relapsed ALL patients (n=11) and in ALLs refractory to Blinatumomab (n=5). Exhaustion markers (PD-1, TIM-3) were significantly higher on patients' T cells compared to physiologic controls. T-cell proliferation and effector function was target-cell dependent and correlated to expression of co-signaling molecules. Blockade of inhibitory PD-1-PD-L and CTLA-4-CD80/86 pathways enhanced T-cell function whereas blockade of co-stimulatory CD28-CD80/86 interaction significantly reduced T-cell function. Combination of Blinatumomab and anti-PD-1 antibody was feasible and induced an anti-leukemic in vivo response in a 12-year-old patient with refractory ALL. In conclusion, ALL cells actively regulate T-cell function by expression of co-signaling molecules and modify efficacy of therapeutic T-cell attack against ALL. Inhibitory interactions of leukemia-induced checkpoint molecules can guide future T-cell therapies.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD19/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfócitos T/imunologia , Biomarcadores Tumorais/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Criança , Feminino , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Linfócitos T/metabolismo
20.
Immunity ; 44(3): 698-711, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26982367

RESUMO

Microsatellite instability in colorectal cancer predicts favorable outcomes. However, the mechanistic relationship between microsatellite instability, tumor-infiltrating immune cells, Immunoscore, and their impact on patient survival remains to be elucidated. We found significant differences in mutational patterns, chromosomal instability, and gene expression that correlated with patient microsatellite instability status. A prominent immune gene expression was observed in microsatellite-instable (MSI) tumors, as well as in a subgroup of microsatellite-stable (MSS) tumors. MSI tumors had increased frameshift mutations, showed genetic evidence of immunoediting, had higher densities of Th1, effector-memory T cells, in situ proliferating T cells, and inhibitory PD1-PDL1 cells, had high Immunoscores, and were infiltrated with mutation-specific cytotoxic T cells. Multivariate analysis revealed that Immunoscore was superior to microsatellite instability in predicting patients' disease-specific recurrence and survival. These findings indicate that assessment of the immune status via Immunoscore provides a potent indicator of tumor recurrence beyond microsatellite-instability staging that could be an important guide for immunotherapy strategies.


Assuntos
Neoplasias Colorretais/diagnóstico , Imunoensaio/métodos , Patologia Molecular/métodos , Subpopulações de Linfócitos T/imunologia , Células Th1/imunologia , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Neoplasias Colorretais/mortalidade , Testes Imunológicos de Citotoxicidade , Análise Mutacional de DNA , Feminino , Mutação da Fase de Leitura/genética , Humanos , Memória Imunológica , Masculino , Instabilidade de Microssatélites , Repetições de Microssatélites , Valor Preditivo dos Testes , Prognóstico , Análise de Sobrevida , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA