Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sports Med ; 52(3): 463-479, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34822137

RESUMO

Resistance training (RT) is the only non-pharmacological intervention known to consistently improve, and therefore offset age-related declines in, skeletal muscle mass, strength, and power. RT is also associated with various health benefits that are underappreciated compared with the perceived benefits of aerobic-based exercise. For example, RT participation is associated with reduced all-cause and cancer-related mortality and reduced incidence of cardiovascular disease, hypertension, and symptoms of both anxiety and depression. Despite these benefits, participation in RT remains low, likely due to numerous factors including time constraints, a high-perceived difficulty, and limited access to facilities and equipment. Identification of RT strategies that limit barriers to participation may increase engagement in RT and subsequently improve population health outcomes. Across the lifespan, declines in strength and power occur up to eight times faster than the loss of muscle mass, and are more strongly associated with functional impairments and risks of morbidity and mortality. Strategies to maximise healthspan should therefore arguably focus more on improving or maintaining muscle strength and power than on increasing muscle mass per se. Accumulating evidence suggests that minimal doses of RT, characterised by lower session volumes than in traditional RT guidelines, together with either (1) higher training intensities/loads performed at lower frequencies (i.e. low-volume, high-load RT) or (2) lower training intensities/loads performed at higher frequencies and with minimal-to-no equipment (i.e. resistance 'exercise snacking'), can improve strength and functional ability in younger and older adults. Such minimal-dose approaches to RT have the potential to minimise various barriers to participation, and may have positive implications for the feasibility and scalability of RT. In addition, brief but frequent minimal-dose RT approaches (i.e. resistance 'exercise snacking') may provide additional benefits for interrupting sedentary behaviour patterns associated with increased cardiometabolic risk. Compared to traditional approaches, minimal-dose RT may also limit negative affective responses, such as increased discomfort and lowered enjoyment, both of which are associated with higher training volumes and may negatively influence exercise adherence. A number of practical factors, including the selection of exercises that target major muscle groups and challenge both balance and the stabilising musculature, may influence the effectiveness of minimal-dose RT on outcomes such as improved independence and quality-of-life in older adults. This narrative review aims to summarise the evidence for minimal-dose RT as a strategy for preserving muscle strength and functional ability across the lifespan, and to discuss practical models and considerations for the application of minimal-dose RT approaches.


Assuntos
Treinamento Resistido , Idoso , Exercício Físico , Humanos , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Comportamento Sedentário
2.
Physiol Rep ; 8(16): e14529, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845565

RESUMO

Understanding human physiological responses to high-fat energy excess (HFEE) may help combat the development of metabolic disease. We aimed to investigate the impact of manipulating the n-3PUFA content of HFEE diets on whole-body and skeletal muscle markers of insulin sensitivity. Twenty healthy males were overfed (150% energy, 60% fat, 25% carbohydrate, 15% protein) for 6 d. One group (n = 10) received 10% of fat intake as n-3PUFA rich fish oil (HF-FO), and the other group consumed a mix of fats (HF-C). Oral glucose tolerance tests with stable isotope tracer infusions were conducted before, and following, HFEE, with muscle biopsies obtained in basal and insulin-stimulated states for measurement of membrane phospholipids, ceramides, mitochondrial enzyme activities, and PKB and AMPKα2 activity. Insulin sensitivity and glucose disposal did not change following HFEE, irrespective of group. Skeletal muscle ceramide content increased following HFEE (8.5 ± 1.2 to 12.1 ± 1.7 nmol/mg, p = .03), irrespective of group. No change in mitochondrial enzyme activity was observed following HFEE, but citrate synthase activity was inversely associated with the increase in the ceramide content (r=-0.52, p = .048). A time by group interaction was observed for PKB activity (p = .003), with increased activity following HFEE in HF-C (4.5 ± 13.0mU/mg) and decreased activity in HF-FO (-10.1 ± 20.7 mU/mg) following HFEE. Basal AMPKα2 activity increased in HF-FO (4.1 ± 0.6 to 5.3 ± 0.7mU/mg, p = .049), but did not change in HF-C (4.6 ± 0.7 to 3.8 ± 0.9mU/mg) following HFEE. We conclude that early skeletal muscle signaling responses to HFEE appear to be modified by dietary n-3PUFA content, but the potential impact on future development of metabolic disease needs exploring.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Ômega-3/metabolismo , Hiperfagia/metabolismo , Músculo Esquelético/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Adolescente , Adulto , Ceramidas/metabolismo , Humanos , Masculino , Estresse Oxidativo , Fosfolipídeos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Physiol Rep ; 5(23)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29233906

RESUMO

Sleep restriction is associated with impaired glucose metabolism and insulin resistance, however, the underlying mechanisms leading to this impairment are unknown. This study aimed to assess whether the decrease in insulin sensitivity observed after sleep restriction is accompanied by changes in skeletal muscle PKB activity. Ten healthy young males participated in this randomized crossover study which included two conditions separated by a 3-week washout period. Participants underwent two nights of habitual sleep (CON) and two nights of sleep which was restricted to 50% of habitual sleep duration (SR) in the home environment. Whole-body glucose tolerance and insulin sensitivity were assessed by an oral glucose tolerance test after the second night of each condition. Skeletal muscle tissue samples were obtained from the vastus lateralis to determine PKB activity. Findings displayed no effect of trial on plasma glucose concentrations (P = 0.222). Plasma insulin area under the curve was higher after sleep restriction compared to the control (P = 0.013). Matsuda index was 18.6% lower in the sleep restriction (P = 0.010). Fold change in PKB activity from baseline tended to be lower in the sleep restriction condition at 30 min (P = 0.098) and 120 min (P = 0.087). In conclusion, we demonstrated decreased whole-body insulin sensitivity in healthy young males following two nights of sleep restriction. Skeletal muscle insulin signaling findings are inconclusive and require further study to examine any potential changes.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Privação do Sono/metabolismo , Adolescente , Adulto , Humanos , Insulina/sangue , Resistência à Insulina , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Privação do Sono/sangue
4.
Am J Physiol Cell Physiol ; 313(6): C604-C611, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971834

RESUMO

Mechanistic target of rapamycin (mTOR) resides as two complexes within skeletal muscle. mTOR complex 1 [mTORC1-regulatory associated protein of mTOR (Raptor) positive] regulates skeletal muscle growth, whereas mTORC2 [rapamycin-insensitive companion of mTOR (Rictor) positive] regulates insulin sensitivity. To examine the regulation of these complexes in human skeletal muscle, we utilized immunohistochemical analysis to study the localization of mTOR complexes before and following protein-carbohydrate feeding (FED) and resistance exercise plus protein-carbohydrate feeding (EXFED) in a unilateral exercise model. In basal samples, mTOR and the lysosomal marker lysosomal associated membrane protein 2 (LAMP2) were highly colocalized and remained so throughout. In the FED and EXFED states, mTOR/LAMP2 complexes were redistributed to the cell periphery [wheat germ agglutinin (WGA)-positive staining] (time effect; P = 0.025), with 39% (FED) and 26% (EXFED) increases in mTOR/WGA association observed 1 h post-feeding/exercise. mTOR/WGA colocalization continued to increase in EXFED at 3 h (48% above baseline) whereas colocalization decreased in FED (21% above baseline). A significant effect of condition (P = 0.05) was noted suggesting mTOR/WGA colocalization was greater during EXFED. This pattern was replicated in Raptor/WGA association, where a significant difference between EXFED and FED was noted at 3 h post-exercise/feeding (P = 0.014). Rictor/WGA colocalization remained unaltered throughout the trial. Alterations in mTORC1 cellular location coincided with elevated S6K1 kinase activity, which rose to a greater extent in EXFED compared with FED at 1 h post-exercise/feeding (P < 0.001), and only remained elevated in EXFED at the 3 h time point (P = 0.037). Collectively these data suggest that mTORC1 redistribution within the cell is a fundamental response to resistance exercise and feeding, whereas mTORC2 is predominantly situated at the sarcolemma and does not alter localization.


Assuntos
Ingestão de Alimentos , Metabolismo Energético , Exercício Físico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Músculo Quadríceps/enzimologia , Adulto , Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/enzimologia , Masculino , Contração Muscular , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Treinamento Resistido , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sarcolema/enzimologia , Fatores de Tempo , Adulto Jovem
6.
Am J Clin Nutr ; 105(1): 151-158, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852617

RESUMO

BACKGROUND: Resistance exercise increases muscle mass and function in older adults, but responses are attenuated compared with younger people. Data suggest that long-chain n-3 polyunsaturated fatty acids (PUFAs) may enhance adaptations to resistance exercise in older women. To our knowledge, this possibility has not been investigated in men. OBJECTIVE: We sought to determine the effects of long-chain n-3 PUFA supplementation on resistance exercise training-induced increases in muscle mass and function and whether these effects differ between older men and women. DESIGN: Fifty men and women [men: n = 27, mean ± SD age: 70.6 ± 4.5 y, mean ± SD body mass index (BMI; in kg/m2): 25.6 ± 4.2; women: n = 23, mean ± SD age: 70.7 ± 3.3 y, mean ± SD BMI: 25.3 ± 4.7] were randomly assigned to either long-chain n-3 PUFA (n = 23; 3 g fish oil/d) or placebo (n = 27; 3 g safflower oil/d) and participated in lower-limb resistance exercise training twice weekly for 18 wk. Muscle size, strength, and quality (strength per unit muscle area), functional abilities, and circulating metabolic and inflammatory markers were measured before and after the intervention. RESULTS: Maximal isometric torque increased after exercise training to a greater (P < 0.05) extent in the long-chain n-3 PUFA group than in the placebo group in women, with no differences (P > 0.05) between groups in men. In both sexes, the effect of exercise training on maximal isokinetic torque at 30, 90, and 240° s-1, 4-m walk time, chair-rise time, muscle anatomic cross-sectional area, and muscle fat did not differ (P > 0.05) between groups. There was a greater (P < 0.05) increase in muscle quality in women after exercise training in the long-chain n-3 PUFA group than in the placebo group, with no such differences in men (P > 0.05). Long-chain n-3 PUFAs resulted in a greater decrease (P < 0.05) than the placebo in plasma triglyceride concentrations in both sexes, with no differences (P > 0.05) in glucose, insulin, or inflammatory markers. CONCLUSION: Long-chain n-3 PUFA supplementation augments increases in muscle function and quality in older women but not in older men after resistance exercise training. This trial was registered at clinicaltrials.gov as NCT02843009.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Suplementos Nutricionais , Óleos de Peixe/farmacologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Treinamento Resistido , Tecido Adiposo , Idoso , Composição Corporal/efeitos dos fármacos , Índice de Massa Corporal , Gorduras na Dieta/sangue , Exercício Físico/fisiologia , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/farmacologia , Feminino , Óleos de Peixe/sangue , Humanos , Extremidade Inferior , Masculino , Movimento , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fatores Sexuais , Torque , Triglicerídeos/sangue
7.
Physiol Rep ; 4(6)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27009278

RESUMO

Fish oil (FO) supplementation potentiates muscle protein synthesis (MPS) in response to a hyperaminoacidemic-hyperinsulinemic infusion. Whether FO supplementation potentiates MPS in response to protein ingestion or when protein ingestion is combined with resistance exercise (RE) remains unknown. In a randomized, parallel group design, 20 healthy males were randomized to receive 5 g/day of either FO or coconut oil control (CO) for 8 weeks. After supplementation, participants performed a bout of unilateral RE followed by ingestion of 30 g of whey protein. Skeletal muscle biopsies were obtained before and after supplementation for assessment of muscle lipid composition and relevant protein kinase activities. Infusion of L-[ring-(13)C6] phenylalanine was used to measure basal myofibrillar MP Sat rest (REST), in a nonexercised leg following protein ingestion (FED) and following RE and protein ingestion (FEDEX).MPS was significantly elevated above REST during FEDEX in both the FO and CO groups, but there was no effect of supplementation. There was a significant increase in MPS in both groups above REST during FED but no effect of supplementation. Supplementation significantly decreased pan PKB activity at RESTin the FO group but not the CO group. There was a significant increase from REST at post-RE for PKB and AMPKα2 activity in the CO group but not in the FO group. In FEDEX, there was a significant increase in p70S6K1 activity from REST at 3 h in the CO group only. These data highlight that 8 weeks of FO supplementation alters kinase signaling activity in response to RE plus protein ingestion without influencing MPS.


Assuntos
Anabolizantes/administração & dosagem , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Treinamento Resistido , Proteínas Quinases Ativadas por AMP/metabolismo , Biópsia , Humanos , Masculino , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Fosfolipídeos/metabolismo , Fosforilação , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Escócia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
8.
Biogerontology ; 17(3): 529-46, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26878863

RESUMO

The preservation of skeletal muscle mass and strength with advancing age are, we propose, critical aspects of ageing with health and vitality. Physical inactivity and poor nutrition are known to accelerate the gradual age-related decline in muscle mass and strength-sarcopenia-however, both are subject to modification. The main purpose of this review is to present the latest, evidence-based recommendations for physical activity and exercise, as well as diet for older adults that would help in preserving muscle mass and strength. We take the position that future physical activity/exercise guidelines need to make specific reference to resistance exercise and highlight the benefits of higher-intensity aerobic exercise training, alongside advocating older adults perform aerobic-based physical activity and household tasks (e.g., carrying groceries). In terms of dietary recommendations, greater emphasis should be placed on optimal rather than minimum protein intakes for older adults. Indeed, guidelines that endorse a daily protein intake of 1.2-1.5 g/kg BM/day, which are levels 50-90 % greater than the current protein Recommendation Dietary Allowance (0.8 g/kg BM/day), are likely to help preserve muscle mass and strength and are safe for healthy older adults. Being cognisant of factors (e.g., reduced appetite) that may preclude older adults from increasing their total daily protein intake, we echo the viewpoint of other active researchers in advocating that protein recommendations for older adults be based on a per meal approach in order to maximize muscle protein synthesis (MPS). On this basis, assuming three meals are consumed daily, a protein dose of 0.4-0.5 g/kg BM should be contained in each meal. We are beginning to understand ways in which to increase the utilization of ingested protein for the stimulation of MPS, namely by increasing the proportion of leucine contained in a given dose of protein, co-ingesting other nutrients (e.g., carbohydrate and fat or supplementation with n-3 polyunsaturated fatty acids) or being physically active prior to protein intake. Clearly, developing simple lifestyle interventions targeted at preserving muscle mass and strength with advancing age is crucial for facilitating longer, healthier lives into older age.


Assuntos
Dietoterapia/normas , Condicionamento Físico Humano/normas , Guias de Prática Clínica como Assunto , Sarcopenia/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Terapia Combinada/normas , Medicina Baseada em Evidências , Estilo de Vida Saudável , Humanos
9.
FASEB J ; 29(10): 4358-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169935

RESUMO

We examined how the stimulatory effect of leucine on the mechanistic target of rapamycin complex 1 (mTORC1) pathway is affected by the presence of the remaining essential amino acids (EAAs). Nine male subjects performed resistance exercise on 4 occasions and were randomly supplied EAAs with leucine, EAAs without leucine (EAA-Leu), leucine alone, or flavored water (placebo; control). Muscle biopsies were taken from the vastus lateralis before and 60 and 90 min after exercise. Biopsies were analyzed for protein phosphorylation, kinase activity, protein-protein interactions, amino acid concentrations, and tracer incorporation. Leucine alone stimulated ribosomal protein s6 kinase 1 (S6K1) phosphorylation ∼280% more than placebo and EAA-Leu after exercise. Moreover, this response was enhanced by 60-75% after intake of EAAs compared with that of leucine alone (P < 0.05). Kinase activity of S6K1 reflected that of S6K1 phosphorylation; 60 min after exercise, the activity was elevated 3.3- and 4.2-fold with intake of leucine alone and with EAAs, respectively (P < 0.05). The interaction between mammalian target of rapamycin and regulatory-associated protein of mammalian target of rapamycin was unaltered in response to both resistance exercise and amino acid provision. Leucine alone stimulates mTORC1 signaling, although this response is enhanced by other EAAs and does not appear to be caused by alterations in mTORC1 assembly.


Assuntos
Exercício Físico/fisiologia , Leucina/farmacologia , Complexos Multiproteicos/metabolismo , Músculo Esquelético/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adulto , Aminoácidos Essenciais/administração & dosagem , Aminoácidos Essenciais/farmacologia , Estudos Cross-Over , Método Duplo-Cego , Humanos , Immunoblotting , Leucina/provisão & distribuição , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , Fatores de Tempo
10.
Am J Physiol Endocrinol Metab ; 308(6): E470-81, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25605643

RESUMO

Combining endurance and strength training in the same session has been reported to reduce the anabolic response to the latter form of exercise. The underlying mechanism, based primarily on results from rodent muscle, is proposed to involve AMPK-dependent inhibition of mTORC1 signaling. This hypothesis was tested in eight trained male subjects who in randomized order performed either resistance exercise only (R) or interval cycling followed by resistance exercise (ER). Biopsies taken from the vastus lateralis before and after endurance exercise and repeatedly after resistance exercise were assessed for glycogen content, kinase activity, protein phosphorylation, and gene expression. Mixed muscle fractional synthetic rate was measured at rest and during 3 h of recovery using the stable isotope technique. In ER, AMPK activity was elevated immediately after both endurance and resistance exercise (∼90%, P < 0.05) but was unchanged in R. Thr(389) phosphorylation of S6K1 was increased severalfold immediately after exercise (P < 0.05) in both trials and increased further throughout recovery. After 90 and 180 min recovery, S6K1 activity was elevated (∼55 and ∼110%, respectively, P < 0.05) and eukaryotic elongation factor 2 phosphorylation was reduced (∼55%, P < 0.05) with no difference between trials. In contrast, markers for protein catabolism were differently influenced by the two modes of exercise; ER induced a significant increase in gene and protein expression of MuRF1 (P < 0.05), which was not observed following R exercise only. In conclusion, cycling-induced elevation in AMPK activity does not inhibit mTOR complex 1 signaling after subsequent resistance exercise but may instead interfere with the hypertrophic response by influencing key components in protein breakdown.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ciclismo/fisiologia , Músculo Esquelético/metabolismo , Treinamento Resistido , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Adulto , Ativação Enzimática , Glicogênio/metabolismo , Humanos , Masculino , Ligação Proteica , Treinamento Resistido/métodos , Proteínas Quinases S6 Ribossômicas 70-kDa/antagonistas & inibidores , Regulação para Cima , Adulto Jovem
11.
Prostaglandins Leukot Essent Fatty Acids ; 90(6): 199-206, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24726616

RESUMO

The aim of this study was to examine changes in the lipid profile of red blood cells and muscle tissue along with the expression of anabolic signalling proteins in human skeletal muscle. Following a 2-week control period, 10 healthy male participants consumed 5 g d(-1) of fish oil (FO) for 4 weeks. Muscle biopsies and venous blood samples were collected in the fasted state 2 weeks prior (W-2) and immediately before (W0) the initiation of FO supplementation for internal control. Muscle biopsies and venous blood samples were again obtained at week 1 (W1), 2 (W2) and 4 (W4) during FO supplementation for assessment of changes in lipid composition and expression of anabolic signalling proteins. There was no change in the composition of any lipid class between W-2 and W0 confirming control. Following FO supplementation n-3 polyunsaturated fatty acid (n-3 PUFA) muscle lipid composition was increased from W0 to W2 and continued to rise at W4. n-3 PUFA blood lipid composition was increased from W0 to W1 and remained elevated for the remaining time points. Total protein content of focal adhesion kinase (FAK) increased from W0 to W4 whereas total mechanistic target of rapamycin (mTOR) was increased from W0 at W1 with no further significant increases at W2 and W4. These data show that FO supplementation results in discordant changes in the n-3 PUFA composition of skeletal muscle compared to blood that is associated with increases in total FAK content.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/administração & dosagem , Lipídeos/sangue , Músculo Esquelético/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Anabolizantes/administração & dosagem , Proteínas de Ciclo Celular , Quinase 1 de Adesão Focal/metabolismo , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Fosfoproteínas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
12.
J Appl Physiol (1985) ; 116(5): 504-13, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24436296

RESUMO

AMPK (AMP-dependant protein kinase)-mTORC1 (mechanistic target of rapamycin in complex 1)-p70S6K1 (ribosomal protein S6 kinase 1 of 70 kDa) signaling plays a crucial role in muscle protein synthesis (MPS). Understanding this pathway has been advanced by the application of the Western blot (WB) technique. However, because many components of the mTORC1 pathway undergo numerous, multisite posttranslational modifications, solely studying the phosphorylation changes of mTORC1 and its substrates may not adequately represent the true metabolic signaling processes. The aim of this study was to develop and apply a quantitative in vitro [γ-(32)P] ATP kinase assay (KA) for p70S6K1 to assess kinase activity in human skeletal muscle to resistance exercise (RE) and protein feeding. In an initial series of experiments the assay was validated in tissue culture and in p70S6K1-knockout tissues. Following these experiments, the methodology was applied to assess p70S6K1 signaling responses to a physiologically relevant stimulus. Six men performed unilateral RE followed by the consumption of 20 g of protein. Muscle biopsies were obtained at pre-RE, and 1 and 3 h post-RE. In response to RE and protein consumption, p70S6K1 activity as assessed by the KA was significantly increased from pre-RE at 1 and 3 h post-RE. However, phosphorylated p70S6K1(thr389) was not significantly elevated. AMPK activity was suppressed from pre-RE at 3 h post-RE, whereas phosphorylated ACC(ser79) was unchanged. Total protein kinase B activity also was unchanged after RE from pre-RE levels. Of the other markers we assessed by WB, 4EBP1(thr37/46) phosphorylation was the only significant responder, being elevated at 3 h post-RE from pre-RE. These data highlight the utility of the KA to study skeletal muscle plasticity.


Assuntos
Complexos de ATP Sintetase , Músculo Esquelético/fisiologia , Compostos Radiofarmacêuticos , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Animais , Western Blotting , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Fosfatos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Treinamento Resistido , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Técnicas de Cultura de Tecidos , Adulto Jovem
13.
J Physiol Sci ; 64(1): 13-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24043354

RESUMO

Knockout of Kv1.3 improves glucose homeostasis and confers resistance to obesity. Additionally, Kv1.3 inhibition enhances glucose uptake. This is thought to occur through calcium release. Kv1.3 inhibition in T-lymphocytes alters mitochondrial membrane potential, and, as many agents that induce Ca(2+) release or inhibit mitochondrial function activate AMPK, we hypothesised that Kv1.3 inhibition would activate AMPK and increase glucose uptake. We screened cultured muscle with a range of Kv1.3 inhibitors for their ability to alter glucose uptake. Only Psora4 increased glucose uptake in C2C12 myotubes. None of the inhibitors had any impact on L6 myotubes. Magratoxin activated AMPK in C2C12 myotubes and only Pap1 activated AMPK in the SOL. Kv1.3 inhibitors did not alter cellular respiration, indicating a lack of effect on mitochondrial function. In conclusion, AMPK does not mediate the effects of Kv1.3 inhibitors and they display differential effects in different skeletal muscle cell lines without impairing mitochondrial function.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/efeitos dos fármacos , Músculo Esquelético/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Ficusina/farmacologia , Técnicas In Vitro , Camundongos , Mitocôndrias Musculares/efeitos dos fármacos , Modelos Animais , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Proteínas Associadas a Pancreatite , Ratos , Venenos de Escorpião/farmacologia
14.
J Appl Physiol (1985) ; 114(4): 461-71, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23264537

RESUMO

This study was undertaken to investigate physiological adaptation with two endurance-training periods differing in intensity distribution. In a randomized crossover fashion, separated by 4 wk of detraining, 12 male cyclists completed two 6-wk training periods: 1) a polarized model [6.4 (±1.4 SD) h/wk; 80%, 0%, and 20% of training time in low-, moderate-, and high-intensity zones, respectively]; and 2) a threshold model [7.5 (±2.0 SD) h/wk; 57%, 43%, and 0% training-intensity distribution]. Before and after each training period, following 2 days of diet and exercise control, fasted skeletal muscle biopsies were obtained for mitochondrial enzyme activity and monocarboxylate transporter (MCT) 1 and 4 expression, and morning first-void urine samples were collected for NMR spectroscopy-based metabolomics analysis. Endurance performance (40-km time trial), incremental exercise, peak power output (PPO), and high-intensity exercise capacity (95% maximal work rate to exhaustion) were also assessed. Endurance performance, PPOs, lactate threshold (LT), MCT4, and high-intensity exercise capacity all increased over both training periods. Improvements were greater following polarized rather than threshold for PPO [mean (±SE) change of 8 (±2)% vs. 3 (±1)%, P < 0.05], LT [9 (±3)% vs. 2 (±4)%, P < 0.05], and high-intensity exercise capacity [85 (±14)% vs. 37 (±14)%, P < 0.05]. No changes in mitochondrial enzyme activities or MCT1 were observed following training. A significant multilevel, partial least squares-discriminant analysis model was obtained for the threshold model but not the polarized model in the metabolomics analysis. A polarized training distribution results in greater systemic adaptation over 6 wk in already well-trained cyclists. Markers of muscle metabolic adaptation are largely unchanged, but metabolomics markers suggest different cellular metabolic stress that requires further investigation.


Assuntos
Ciclismo , Exercício Físico , Contração Muscular , Músculo Esquelético/fisiologia , Resistência Física , Adaptação Fisiológica , Adulto , Biomarcadores/urina , Biópsia , Estudos Cross-Over , Análise Discriminante , Teste de Esforço , Humanos , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica/métodos , Mitocôndrias Musculares/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fadiga Muscular , Proteínas Musculares/metabolismo , Força Muscular , Músculo Esquelético/metabolismo , Escócia , Simportadores/metabolismo , Fatores de Tempo , Urinálise
15.
PLoS One ; 5(7): e11624, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20661274

RESUMO

BACKGROUND: Since activation of the PI3K/(protein kinase B; PKB/akt) pathway has been shown to alter muscle mass and growth, the aim of this study was to determine whether resistance exercise increased insulin like growth factor (IGF) I/phosphoinositide 3-kinase (PI3K) signalling and whether altering PI(3,4,5)P(3) metabolism genetically would increase load induced muscle growth. METHODOLOGY/PRINCIPAL FINDINGS: Acute and chronic resistance exercise in wild type and muscle specific PTEN knockout mice were used to address the role of PI(3,4,5)P(3) regulation in the development of skeletal muscle hypertrophy. Acute resistance exercise did not increase either IGF-1 receptor phosphorylation or IRS1/2 associated p85. Since insulin/IGF signalling to PI3K was unchanged, we next sought to determine whether inactivation of PTEN played a role in load-induced muscle growth. Muscle specific knockout of PTEN resulted in small but significant increases in heart (PTEN(+/+) = 5.00+/-0.02 mg/g, PTEN(-/-) = 5.50+/-0.09 mg/g), and TA (PTEN(+/+) = 1.74+/-0.04 mg/g, PTEN(-/-) = 1.89 +/-0.03) muscle mass, while the GTN, SOL, EDL and PLN remain unchanged. Following ablation, hypertrophy of the PLN, SOL or EDL muscles was similar between PTEN(-/-) and PTEN(+/+) animals. Even though there were some changes in overload-induced PKB and S6K1 phosphorylation, 1 hr following acute resistance exercise there was no difference in the phosphorylation state of S6K1 Thr389 between genotypes. CONCLUSIONS/SIGNIFICANCE: These data suggest that physiological loading does not lead to the enhanced activation of the PI3K/PKB/mTORC1 axis and that neither PI3K activation nor PTEN, and by extension PI(3,4,5)P(3) levels, play a significant role in adult skeletal muscle growth.


Assuntos
Músculo Esquelético/metabolismo , Fosfatidilinositóis/metabolismo , Estresse Mecânico , Animais , Western Blotting , Feminino , Genótipo , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/patologia , Miocárdio/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositóis/genética , Fosforilação/fisiologia , Receptor IGF Tipo 1/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA