Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34378534

RESUMO

Traditional drug safety assessment often fails to predict complications in humans, especially when the drug targets the immune system. Here, we show the unprecedented capability of two human Organs-on-Chips to evaluate the safety profile of T-cell bispecific antibodies (TCBs) targeting tumor antigens. Although promising for cancer immunotherapy, TCBs are associated with an on-target, off-tumor risk due to low levels of expression of tumor antigens in healthy tissues. We leveraged in vivo target expression and toxicity data of TCBs targeting folate receptor 1 (FOLR1) or carcinoembryonic antigen (CEA) to design and validate human immunocompetent Organs-on-Chips safety platforms. We discovered that the Lung-Chip and Intestine-Chip could reproduce and predict target-dependent TCB safety liabilities, based on sensitivity to key determinants thereof, such as target expression and antibody affinity. These novel tools broaden the research options available for mechanistic understandings of engineered therapeutic antibodies and assessing safety in tissues susceptible to adverse events.


Assuntos
Anticorpos Biespecíficos/efeitos adversos , Dispositivos Lab-On-A-Chip/estatística & dados numéricos , Linfócitos T/imunologia , Animais , Feminino , Células HEK293 , Células HeLa , Humanos , Imunoterapia/métodos , Camundongos
2.
Cell Mol Gastroenterol Hepatol ; 12(5): 1719-1741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34284165

RESUMO

BACKGROUND & AIMS: The limited availability of organoid systems that mimic the molecular signatures and architecture of human intestinal epithelium has been an impediment to allowing them to be harnessed for the development of therapeutics as well as physiological insights. We developed a microphysiological Organ-on-Chip (Emulate, Inc, Boston, MA) platform designed to mimic properties of human intestinal epithelium leading to insights into barrier integrity. METHODS: We combined the human biopsy-derived leucine-rich repeat-containing G-protein-coupled receptor 5-positive organoids and Organ-on-Chip technologies to establish a micro-engineered human Colon Intestine-Chip (Emulate, Inc, Boston, MA). We characterized the proximity of the model to human tissue and organoids maintained in suspension by RNA sequencing analysis, and their differentiation to intestinal epithelial cells on the Colon Intestine-Chip under variable conditions. Furthermore, organoids from different donors were evaluated to understand variability in the system. Our system was applied to understanding the epithelial barrier and characterizing mechanisms driving the cytokine-induced barrier disruption. RESULTS: Our data highlight the importance of the endothelium and the in vivo tissue-relevant dynamic microenvironment in the Colon Intestine-Chip in the establishment of a tight monolayer of differentiated, polarized, organoid-derived intestinal epithelial cells. We confirmed the effect of interferon-γ on the colonic barrier and identified reorganization of apical junctional complexes, and induction of apoptosis in the intestinal epithelial cells as mediating mechanisms. We show that in the human Colon Intestine-Chip exposure to interleukin 22 induces disruption of the barrier, unlike its described protective role in experimental colitis in mice. CONCLUSIONS: We developed a human Colon Intestine-Chip platform and showed its value in the characterization of the mechanism of action of interleukin 22 in the human epithelial barrier. This system can be used to elucidate, in a time- and challenge-dependent manner, the mechanism driving the development of leaky gut in human beings and to identify associated biomarkers.


Assuntos
Microambiente Celular , Colo/fisiologia , Mucosa Intestinal/metabolismo , Biomarcadores , Técnicas de Cultura de Células , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Interleucinas/metabolismo , Mucosa Intestinal/microbiologia , Dispositivos Lab-On-A-Chip , Organoides , Permeabilidade , Transcriptoma , Interleucina 22
3.
Cell Mol Gastroenterol Hepatol ; 5(4): 669-677.e2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930984

RESUMO

BACKGROUND AND AIMS: Human intestinal organoids derived from induced pluripotent stem cells have tremendous potential to elucidate the intestinal epithelium's role in health and disease, but it is difficult to directly assay these complex structures. This study sought to make this technology more amenable for study by obtaining epithelial cells from induced pluripotent stem cell-derived human intestinal organoids and incorporating them into small microengineered Chips. We then investigated if these cells within the Chip were polarized, had the 4 major intestinal epithelial subtypes, and were biologically responsive to exogenous stimuli. METHODS: Epithelial cells were positively selected from human intestinal organoids and were incorporated into the Chip. The effect of continuous media flow was examined. Immunocytochemistry and in situ hybridization were used to demonstrate that the epithelial cells were polarized and possessed the major intestinal epithelial subtypes. To assess if the incorporated cells were biologically responsive, Western blot analysis and quantitative polymerase chain reaction were used to assess the effects of interferon (IFN)-γ, and fluorescein isothiocyanate-dextran 4 kDa permeation was used to assess the effects of IFN-γ and tumor necrosis factor-α on barrier function. RESULTS: The optimal cell seeding density and flow rate were established. The continuous administration of flow resulted in the formation of polarized intestinal folds that contained Paneth cells, goblet cells, enterocytes, and enteroendocrine cells along with transit-amplifying and LGR5+ stem cells. Administration of IFN-γ for 1 hour resulted in the phosphorylation of STAT1, whereas exposure for 3 days resulted in a significant upregulation of IFN-γ related genes. Administration of IFN-γ and tumor necrosis factor-α for 3 days resulted in an increase in intestinal permeability. CONCLUSIONS: We demonstrate that the Intestine-Chip is polarized, contains all the intestinal epithelial subtypes, and is biologically responsive to exogenous stimuli. This represents a more amenable platform to use organoid technology and will be highly applicable to personalized medicine and a wide range of gastrointestinal conditions.

4.
Clin Pharmacol Ther ; 104(6): 1240-1248, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29484632

RESUMO

Clinical development of Hu5c8, a monoclonal antibody against CD40L intended for treatment of autoimmune disorders, was terminated due to unexpected thrombotic complications. These life-threatening side effects were not discovered during preclinical testing due to the lack of predictive models. In the present study, we describe the development of a microengineered system lined by human endothelium perfused with human whole blood, a "Vessel-Chip." The Vessel-Chip allowed us to evaluate key parameters in thrombosis, such as endothelial activation, platelet adhesion, platelet aggregation, fibrin clot formation, and thrombin anti-thrombin complexes in the Chip-effluent in response to Hu5c8 in the presence of soluble CD40L. Importantly, the observed prothrombotic effects were not observed with Hu5c8-IgG2σ designed with an Fc domain that does not bind the FcγRIIa receptor, suggesting that this approach may have a low potential risk for thrombosis. Our results demonstrate the translational potential of Organs-on-Chips, as advanced microengineered systems to better predict human response.


Assuntos
Anticorpos Monoclonais Humanizados/toxicidade , Doenças Autoimunes/tratamento farmacológico , Coagulação Sanguínea/efeitos dos fármacos , Ligante de CD40/antagonistas & inibidores , Desenho de Fármacos , Desenvolvimento de Medicamentos/instrumentação , Fatores Imunológicos/toxicidade , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip , Trombose/induzido quimicamente , Anticorpos Monoclonais Humanizados/metabolismo , Doenças Autoimunes/imunologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Ligante de CD40/imunologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fatores Imunológicos/metabolismo , Estudos Prospectivos , Receptores de IgG/metabolismo , Estudos Retrospectivos , Medição de Risco , Trombose/sangue
5.
Biomed Microdevices ; 18(4): 73, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27464497

RESUMO

The vascular endothelium and shear stress are critical determinants of physiological hemostasis and platelet function in vivo, yet current diagnostic and monitoring devices do not fully incorporate endothelial function under flow in their assessment and, therefore, they can be unreliable and inaccurate. It is challenging to include the endothelium in assays for clinical laboratories or point-of-care settings because living cell cultures are not sufficiently robust. Here, we describe a microfluidic device that is lined by a human endothelium that is chemically fixed, but still retains its ability to modulate hemostasis under continuous flow in vitro even after few days of storage. This device lined with a fixed endothelium supports formation of platelet-rich thrombi in the presence of physiological shear, similar to a living arterial vessel. We demonstrate the potential clinical value of this device by showing that thrombus formation and platelet function can be measured within minutes using a small volume (0.5 mL) of whole blood taken from subjects receiving antiplatelet medications. The inclusion of a fixed endothelial microvessel will lead to biomimetic analytical devices that can potentially be used for diagnostics and point-of-care applications.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Dispositivos Lab-On-A-Chip , Trombose/diagnóstico , Plaquetas/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fibrina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Sistemas Automatizados de Assistência Junto ao Leito , Estresse Mecânico , Trombose/sangue , Trombose/tratamento farmacológico
6.
J Med Chem ; 58(17): 7057-75, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26291341

RESUMO

We report here a novel series of benzimidazole sulfonamides that act as antagonists of the S1P1 receptor, identified by exploiting an understanding of the pharmacophore of a high throughput screening (HTS)-derived series of compounds described previously. Lead compound 2 potently inhibits S1P-induced receptor internalization in a cell-based assay (EC50 = 0.05 µM), but has poor physical properties and metabolic stability. Evolution of this compound through structure-activity relationship development and property optimization led to in vivo probes such as 4. However, this compound was unexpectedly found to be a potent CYP3A inducer in human hepatocytes, and thus further chemistry efforts were directed at addressing this liability. By employing a pregnane X receptor (PXR) reporter gene assay to prioritize compounds for further testing in human hepatocytes, we identified lipophilicity as a key molecular property influencing the likelihood of P450 induction. Ultimately, we have identified compounds such as 46 and 47, which demonstrate the desired S1P1 antagonist activity while having greatly reduced risk of CYP3A induction in humans. These compounds have excellent oral bioavailability in preclinical species and exhibit pharmacodynamic effects of S1P1 antagonism in several in vivo models following oral dosing. Relatively modest antitumor activity was observed in multiple xenograft models, however, suggesting that selective S1P1 antagonists would have limited utility as anticancer therapeutics as single agents.


Assuntos
Benzimidazóis/química , Piridinas/química , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Sulfonamidas/química , Administração Oral , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Disponibilidade Biológica , Células Cultivadas , Citocromo P-450 CYP3A/biossíntese , Indutores do Citocromo P-450 CYP3A/síntese química , Indutores do Citocromo P-450 CYP3A/química , Indutores do Citocromo P-450 CYP3A/farmacologia , Genes Reporter , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Receptor de Pregnano X , Piridinas/síntese química , Piridinas/farmacologia , Receptores de Esteroides/genética , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Integr Biol (Camb) ; 5(9): 1119-29, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23644926

RESUMO

Kidney toxicity is one of the most frequent adverse events reported during drug development. The lack of accurate predictive cell culture models and the unreliability of animal studies have created a need for better approaches to recapitulate kidney function in vitro. Here, we describe a microfluidic device lined by living human kidney epithelial cells exposed to fluidic flow that mimics key functions of the human kidney proximal tubule. Primary kidney epithelial cells isolated from human proximal tubule are cultured on the upper surface of an extracellular matrix-coated, porous, polyester membrane that splits the main channel of the device into two adjacent channels, thereby creating an apical 'luminal' channel and a basal 'interstitial' space. Exposure of the epithelial monolayer to an apical fluid shear stress (0.2 dyne cm(-2)) that mimics that found in living kidney tubules results in enhanced epithelial cell polarization and primary cilia formation compared to traditional Transwell culture systems. The cells also exhibited significantly greater albumin transport, glucose reabsorption, and brush border alkaline phosphatase activity. Importantly, cisplatin toxicity and Pgp efflux transporter activity measured on-chip more closely mimic the in vivo responses than results obtained with cells maintained under conventional culture conditions. While past studies have analyzed kidney tubular cells cultured under flow conditions in vitro, this is the first report of a toxicity study using primary human kidney proximal tubular epithelial cells in a microfluidic 'organ-on-a-chip' microdevice. The in vivo-like pathophysiology observed in this system suggests that it might serve as a useful tool for evaluating human-relevant renal toxicity in preclinical safety studies.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Túbulos Renais Proximais/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Albuminas/metabolismo , Fosfatase Alcalina/metabolismo , Transporte Biológico , Cisplatino/farmacocinética , Cisplatino/toxicidade , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Glucose/metabolismo , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/ultraestrutura , Microscopia de Fluorescência
8.
Sci Transl Med ; 4(159): 159ra147, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136042

RESUMO

Preclinical drug development studies currently rely on costly and time-consuming animal testing because existing cell culture models fail to recapitulate complex, organ-level disease processes in humans. We provide the proof of principle for using a biomimetic microdevice that reconstitutes organ-level lung functions to create a human disease model-on-a-chip that mimics pulmonary edema. The microfluidic device, which reconstitutes the alveolar-capillary interface of the human lung, consists of channels lined by closely apposed layers of human pulmonary epithelial and endothelial cells that experience air and fluid flow, as well as cyclic mechanical strain to mimic normal breathing motions. This device was used to reproduce drug toxicity-induced pulmonary edema observed in human cancer patients treated with interleukin-2 (IL-2) at similar doses and over the same time frame. Studies using this on-chip disease model revealed that mechanical forces associated with physiological breathing motions play a crucial role in the development of increased vascular leakage that leads to pulmonary edema, and that circulating immune cells are not required for the development of this disease. These studies also led to identification of potential new therapeutics, including angiopoietin-1 (Ang-1) and a new transient receptor potential vanilloid 4 (TRPV4) ion channel inhibitor (GSK2193874), which might prevent this life-threatening toxicity of IL-2 in the future.


Assuntos
Interleucina-2/efeitos adversos , Pulmão/patologia , Técnicas Analíticas Microfluídicas , Modelos Biológicos , Edema Pulmonar/induzido quimicamente , Animais , Transporte Biológico/efeitos dos fármacos , Barreira Alveolocapilar/efeitos dos fármacos , Barreira Alveolocapilar/patologia , Capilares/efeitos dos fármacos , Capilares/patologia , Progressão da Doença , Gases/metabolismo , Humanos , Técnicas In Vitro , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Methods Mol Biol ; 290: 207-29, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15361665

RESUMO

As our knowledge of the species differences in drug metabolism and drug-induced hepatotoxicity has expanded significantly, the need for human-relevant in vitro hepatic model systems has become more apparent than ever before. Human hepatocytes have become the "gold standard" for evaluating hepatic metabolism and toxicity of drugs and other xenobiotics in vitro. In addition, they are becoming utilized more extensively for many kinds of biomedical research, including a variety of biological, pharmacological, and toxicological studies. This chapter describes methods for the isolation of primary human hepatocytes from liver tissue obtained from an encapsulated end wedge removed from patients undergoing resection for removal of liver tumors or resected segments from whole livers obtained from multiorgan donors. The maintenance of normal cellular physiology and intercellular contacts in vitro is of particular importance for optimal phenotypic gene expression and response to drugs and other xenobiotics. As such, methods are described for culturing primary hepatocytes under various matrix compositions and geometries. Differential expression of liver-selective properties occurs over time in primary hepatocytes dependent on the culture and study conditions. Overall, improved isolation and cultivation methods have allowed for exciting advances in our understanding of the pathology, biochemistry, and cellular and molecular biology of human hepatocytes.


Assuntos
Separação Celular , Adulto , Técnicas de Cultura de Células , Hepatócitos/citologia , Humanos
10.
Drug Metab Dispos ; 31(4): 439-46, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12642470

RESUMO

Rosiglitazone and pioglitazone are thiazolidinediones used for treatment of noninsulin-dependent diabetes mellitus. These compounds, along with troglitazone, were evaluated for the ability to induce cytochrome P450 enzymes (P450) in primary human hepatocyte cultures and to inhibit P450 in human microsomes. In induction studies, all three thiazolidinediones caused a dose-dependent increase in CYP3A4 activity and immunoreactive protein. While troglitazone was the most potent, rosiglitazone and pioglitazone generally exceeded troglitazone in absolute CYP3A4 activity achieved at concentrations > or =10 microM. A comparable concentration-dependent increase in CYP2B6 immunoreactive protein was observed with all three thiazolidinediones. Microarray analysis revealed rifampin > troglitazone > pioglitazone > rosiglitazone in terms of CYP3A4 mRNA induction potential with 10 microM compound. Inhibition studies conducted for CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP2A6, and CYP2E1 showed troglitazone to be the most nonselective and potent inhibitor followed by rosiglitazone and pioglitazone. In vitro, the thiazolidinediones were strong inhibitors of CYP2C8, with K(i) values between 1.7 and 5.6 microM, and of CYP3A4, with K(i) values between 1.6 and 11.8 microM. Troglitazone, in addition, inhibited CYP2C9 (K(i) 0.6 microM). Although the inhibitory effects of the thiazolidinediones have not been demonstrated clinically, our results suggest there is potential for interactions with CYP2C8 substrates. This is the first report of in vitro induction of P450 enzymes by rosiglitazone and pioglitazone. While only the induction of CYP3A4 by troglitazone has been demonstrated in vivo, these results suggest that other thiazolidinediones may have the potential to cause clinically significant drug interactions at sufficiently high doses.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/efeitos dos fármacos , Tiazóis/farmacologia , Tiazolidinedionas , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Western Blotting , Células Cultivadas , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2A6 , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , Relação Dose-Resposta a Droga , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hepatócitos/enzimologia , Humanos , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Concentração Inibidora 50 , Cinética , Fígado/citologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Oxigenases de Função Mista/metabolismo , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , RNA Mensageiro/metabolismo , Esteroide Hidroxilases/análise , Esteroide Hidroxilases/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA