Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6687): eadi8081, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452069

RESUMO

Phonation critically depends on precise controls of laryngeal muscles in coordination with ongoing respiration. However, the neural mechanisms governing these processes remain unclear. We identified excitatory vocalization-specific laryngeal premotor neurons located in the retroambiguus nucleus (RAmVOC) in adult mice as being both necessary and sufficient for driving vocal cord closure and eliciting mouse ultrasonic vocalizations (USVs). The duration of RAmVOC activation can determine the lengths of both USV syllables and concurrent expiration periods, with the impact of RAmVOC activation depending on respiration phases. RAmVOC neurons receive inhibition from the preBötzinger complex, and inspiration needs override RAmVOC-mediated vocal cord closure. Ablating inhibitory synapses in RAmVOC neurons compromised this inspiration gating of laryngeal adduction, resulting in discoordination of vocalization with respiration. Our study reveals the circuits for vocal production and vocal-respiratory coordination.


Assuntos
Tronco Encefálico , Fonação , Respiração , Prega Vocal , Animais , Masculino , Camundongos , Tronco Encefálico/fisiologia , Bulbo/fisiologia , Neurônios/fisiologia , Fonação/fisiologia , Prega Vocal/inervação , Prega Vocal/fisiologia , Camundongos Endogâmicos C57BL , Feminino , Proteínas Proto-Oncogênicas c-fos/genética
2.
Neuron ; 102(5): 1053-1065.e4, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31006556

RESUMO

How general anesthesia (GA) induces loss of consciousness remains unclear, and whether diverse anesthetic drugs and sleep share a common neural pathway is unknown. Previous studies have revealed that many GA drugs inhibit neural activity through targeting GABA receptors. Here, using Fos staining, ex vivo brain slice recording, and in vivo multi-channel electrophysiology, we discovered a core ensemble of hypothalamic neurons in and near the supraoptic nucleus, consisting primarily of neuroendocrine cells, which are persistently and commonly activated by multiple classes of GA drugs. Remarkably, chemogenetic or brief optogenetic activations of these anesthesia-activated neurons (AANs) strongly promote slow-wave sleep and potentiates GA, whereas conditional ablation or inhibition of AANs led to diminished slow-wave oscillation, significant loss of sleep, and shortened durations of GA. These findings identify a common neural substrate underlying diverse GA drugs and natural sleep and reveal a crucial role of the neuroendocrine system in regulating global brain states. VIDEO ABSTRACT.


Assuntos
Anestésicos Gerais/farmacologia , Hipnóticos e Sedativos/farmacologia , Células Neuroendócrinas/efeitos dos fármacos , Sono de Ondas Lentas/efeitos dos fármacos , Núcleo Supraóptico/efeitos dos fármacos , Anestesia Geral , Animais , Dexmedetomidina/farmacologia , Eletroencefalografia , Eletromiografia , Fenômenos Eletrofisiológicos , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Isoflurano/farmacologia , Ketamina/farmacologia , Camundongos , Células Neuroendócrinas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Optogenética , Técnicas de Patch-Clamp , Propofol/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sono/efeitos dos fármacos , Sono/fisiologia , Sono de Ondas Lentas/fisiologia , Núcleo Supraóptico/citologia , Núcleo Supraóptico/metabolismo
3.
Nat Neurosci ; 20(12): 1734-1743, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29184209

RESUMO

Humans often rank craniofacial pain as more severe than body pain. Evidence suggests that a stimulus of the same intensity induces stronger pain in the face than in the body. However, the underlying neural circuitry for the differential processing of facial versus bodily pain remains unknown. Interestingly, the lateral parabrachial nucleus (PBL), a critical node in the affective pain circuit, is activated more strongly by noxious stimulation of the face than of the hindpaw. Using a novel activity-dependent technology called CANE developed in our laboratory, we identified and selectively labeled noxious-stimulus-activated PBL neurons and performed comprehensive anatomical input-output mapping. Surprisingly, we uncovered a hitherto uncharacterized monosynaptic connection between cranial sensory neurons and the PBL-nociceptive neurons. Optogenetic activation of this monosynaptic craniofacial-to-PBL projection induced robust escape and avoidance behaviors and stress calls, whereas optogenetic silencing specifically reduced facial nociception. The monosynaptic circuit revealed here provides a neural substrate for heightened craniofacial affective pain.


Assuntos
Dor Facial/fisiopatologia , Dor Facial/psicologia , Nociceptores , Sinapses , Afeto , Vias Aferentes/fisiopatologia , Animais , Comportamento Animal , Condicionamento Operante , Feminino , Genes fos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Estimulação Física
4.
Neuron ; 92(4): 739-753, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27974160

RESUMO

We developed a technology (capturing activated neuronal ensembles [CANE]) to label, manipulate, and transsynaptically trace neural circuits that are transiently activated in behavioral contexts with high efficiency and temporal precision. CANE consists of a knockin mouse and engineered viruses designed to specifically infect activated neurons. Using CANE, we selectively labeled neurons that were activated by either fearful or aggressive social encounters in a hypothalamic subnucleus previously known as a locus for aggression, and discovered that social-fear and aggression neurons are intermixed but largely distinct. Optogenetic stimulation of CANE-captured social-fear neurons (SFNs) is sufficient to evoke fear-like behaviors in normal social contexts, whereas silencing SFNs resulted in reduced social avoidance. CANE-based mapping of axonal projections and presynaptic inputs to SFNs further revealed a highly distributed and recurrent neural network. CANE is a broadly applicable technology for dissecting causality and connectivity of spatially intermingled but functionally distinct ensembles.


Assuntos
Agressão , Comportamento Animal/fisiologia , Medo/fisiologia , Hipotálamo/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Comportamento Social , Animais , Axônios/metabolismo , Axônios/fisiologia , Técnicas de Introdução de Genes , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Camundongos , Rede Nervosa/metabolismo , Neurônios/metabolismo , Optogenética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Núcleo Hipotalâmico Ventromedial/fisiologia
5.
Biochem Biophys Res Commun ; 425(2): 189-94, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22828515

RESUMO

TMEFF2 is a single-transmembrane protein containing one EGF-like and two follistatin-like domains. Some studies implicated TMEFF2 as a tumor suppressor for prostate and other cancers, whereas others reported TMEFF2 functioning as a growth factor for neurons and other cells. To gain insights into the apparently conflicting roles of TMEFF2, we generated a null allele of Tmeff2 gene by replacing its first coding exon with human placental alkaline phosphatase cDNA (Tmeff2(PLAP)). Tmeff2(PLAP/PLAP) homozygous mutant mice are born normal, but show growth retardation and die around weaning age. Tmeff2 is widely expressed in the nervous system, and the Tmeff2(PLAP) knock-in allele enables the visualization of neuronal innervations of skin and internal organs with a simple alkaline phosphatase staining. Tmeff2 is also highly expressed in prostate gland and white adipose tissues (WAT). However, with the exception of reduced WAT mass, extensive anatomical and molecular analyses failed to detect any structural or molecular abnormalities in the brain, the spinal cord, the enteric nervous system, or the prostate in the Tmeff2 mutants. No tumors were found in Tmeff2-mutant mice. The Tmeff2(PLAP/PLAP) knock-in mouse is an useful tool for studying the in vivo biological functions of TMEFF2.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Adipogenia , Tecido Adiposo Branco/anatomia & histologia , Tecido Adiposo Branco/metabolismo , Animais , Camundongos , Camundongos Knockout , Sistema Nervoso/anatomia & histologia , Neurogênese/genética , Neurônios/citologia
6.
Neuron ; 55(4): 572-86, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17698011

RESUMO

Somatosensory information from the face is transmitted to the brain by trigeminal sensory neurons. It was previously unknown whether neurons innervating distinct areas of the face possess molecular differences. We have identified a set of genes differentially expressed along the dorsoventral axis of the embryonic mouse trigeminal ganglion and thus can be considered trigeminal positional identity markers. Interestingly, establishing some of the spatial patterns requires signals from the developing face. We identified bone morphogenetic protein 4 (BMP4) as one of these target-derived factors and showed that spatially defined retrograde BMP signaling controls the differential gene expressions in trigeminal neurons through both Smad4-independent and Smad4-dependent pathways. Mice lacking one of the BMP4-regulated transcription factors, Onecut2 (OC2), have defects in the trigeminal central projections representing the whiskers. Our results provide molecular evidence for both spatial patterning and retrograde regulation of gene expression in sensory neurons during the development of the somatosensory map.


Assuntos
Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Face/embriologia , Neurônios Aferentes/fisiologia , Transdução de Sinais/fisiologia , Gânglio Trigeminal/citologia , Animais , Padronização Corporal/genética , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/genética , Mapeamento Encefálico , Células Cultivadas , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Gânglio Trigeminal/embriologia , Proteína Wnt1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA