Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Commun ; 14(1): 4987, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591884

RESUMO

PPARα corepressor NCoR1 is a key regulator of fatty acid ß-oxidation and ketogenesis. However, its regulatory mechanism is largely unknown. Here, we report that oncoprotein p21-activated kinase 4 (PAK4) is an NCoR1 kinase. Specifically, PAK4 phosphorylates NCoR1 at T1619/T2124, resulting in an increase in its nuclear localization and interaction with PPARα, thereby repressing the transcriptional activity of PPARα. We observe impaired ketogenesis and increases in PAK4 protein and NCoR1 phosphorylation levels in liver tissues of high fat diet-fed mice, NAFLD patients, and hepatocellular carcinoma patients. Forced overexpression of PAK4 in mice represses ketogenesis and thereby increases hepatic fat accumulation, whereas genetic ablation or pharmacological inhibition of PAK4 exhibites an opposite phenotype. Interestingly, PAK4 protein levels are significantly suppressed by fasting, largely through either cAMP/PKA- or Sirt1-mediated ubiquitination and proteasome degradation. In this way, our findings provide evidence for a PAK4-NCoR1/PPARα signaling pathway that regulates fatty acid ß-oxidation and ketogenesis.


Assuntos
Ácidos Graxos , PPAR alfa , Quinases Ativadas por p21 , Animais , Camundongos , Proteínas Correpressoras , Ácidos Graxos/metabolismo , Quinases Ativadas por p21/genética , PPAR alfa/genética , Correpressor 1 de Receptor Nuclear/genética , Humanos , Fosforilação , Transdução de Sinais
2.
Free Radic Biol Med ; 184: 42-52, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390453

RESUMO

Alcoholic liver disease is the major cause of chronic liver diseases. Excessive alcohol intake results in endoplasmic reticulum (ER) stress. ERdj5, a member of DNAJ family, is an ER-resident chaperone protein, whose role in alcoholic liver disease remains to be investigated. In this study, we aim to address the effect of ERdj5 on alcoholic liver disease and the underlying mechanism. Hepatic Dnajc10 (ERdj5) mRNA expression was elevated in both human and mouse alcoholic hepatitis. In mice subjected to chronic and binge ethanol feeding, ERdj5 levels were also markedly increased. Hepatic Dnajc10 correlated with Xbp1s mRNA. Tunicamycin, an ER stress inducer, increased ERdj5 levels. Dnajc10 knockout mice exhibited exacerbated alcohol-induced liver injury and hepatic steatosis. However, the macrophage numbers and chemokine levels were similar to those in wild-type mice. Depletion of Dnajc10 promoted oxidative stress. Ethanol feeding increased hepatic H2O2 levels, and these were further increased in Dnajc10 knockout mice. Additionally, Dnajc10-deficient hepatocytes produced large amounts of reactive oxygen species. Notably, Nrf2, a central regulator of oxidative stress, was decreased by depletion of Dnajc10 in the nuclear fraction of ethanol-treated mouse liver. Consistently, liver tissues from ethanol-fed Dnajc10 knockout mice had reduced expression of downstream antioxidant genes. Furthermore, hepatic glutathione content in the liver of knockout mice declined compared to wild-type mice. In conclusion, our results demonstrate that ethanol-induced ERdj5 may regulate the Nrf2 pathway and glutathione contents, and have protective effects on liver damage and alcohol-mediated oxidative stress in mice. These suggest that ERdj5 has the potential to protect against alcoholic liver disease.


Assuntos
Proteínas de Choque Térmico HSP40 , Hepatopatias Alcoólicas , Chaperonas Moleculares , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Etanol/toxicidade , Glutationa/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Peróxido de Hidrogênio/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/genética , Camundongos Knockout , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo
3.
Hepatology ; 76(2): 345-356, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35108418

RESUMO

BACKGROUND AND AIMS: p21-activated kinase 4 (PAK4), an oncogenic protein, has emerged as a promising target for anticancer drug development. Its role in oxidative stress conditions, however, remains elusive. We investigated the effects of PAK4 signaling on hepatic ischemia/reperfusion (I/R) injury. APPROACH AND RESULTS: Hepatocyte- and myeloid-specific Pak4 knockout (KO) mice and their littermate controls were subjected to a partial hepatic I/R (HIR) injury. We manipulated the catalytic activity of PAK4, either through genetic engineering (gene knockout, overexpression of wild-type [WT] or dominant-negative kinase) or pharmacological inhibitor, coupled with a readout of nuclear factor erythroid 2-related factor 2 (Nrf2) activity, to test the potential function of PAK4 on HIR injury. PAK4 expression was markedly up-regulated in liver during HIR injury in mice and humans. Deletion of PAK4 in hepatocytes, but not in myeloid cells, ameliorated liver damages, as demonstrated in the decrease in hepatocellular necrosis and inflammatory responses. Conversely, the forced expression of WT PAK4 aggravated the pathological changes. PAK4 directly phosphorylated Nrf2 at T369, and it led to its nuclear export and proteasomal degradation, all of which impaired antioxidant responses in hepatocytes. Nrf2 silencing in liver abolished the protective effects of PAK4 deficiency. A PAK4 inhibitor protected mice from HIR injury. CONCLUSIONS: PAK4 phosphorylates Nrf2 and suppresses its transcriptional activity. Genetic or pharmacological suppression of PAK4 alleviates HIR injury. Thus, PAK4 inhibition may represent a promising intervention against I/R-induced liver injury.


Assuntos
Hepatopatias , Traumatismo por Reperfusão , Quinases Ativadas por p21 , Animais , Apoptose , Humanos , Isquemia/metabolismo , Isquemia/patologia , Fígado/patologia , Hepatopatias/etiologia , Hepatopatias/metabolismo , Hepatopatias/prevenção & controle , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação , Traumatismo por Reperfusão/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
4.
J Cachexia Sarcopenia Muscle ; 12(6): 1776-1788, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34431242

RESUMO

BACKGROUND: Skeletal muscle regeneration is an adaptive response to injury that is crucial to the maintenance of muscle mass and function. A p21-activated kinase 4 (PAK4) serine/threonine kinase is critical to the regulation of cytoskeletal changes, cell proliferation, and growth. However, PAK4's role in myoblast differentiation and regenerative myogenesis remains to be determined. METHODS: We used a mouse model of myotoxin (notexin)-induced muscle regeneration. In vitro myogenesis was performed in the C2C12 myoblast cell line, primary myoblasts, and primary satellite cells. In vivo overexpression of PAK4 or kinase-inactive mutant PAK4S474A was conducted in skeletal muscle to examine PAK4's kinase-dependent effect on muscle regeneration. The regeneration process was evaluated by determining the number and size of multinucleated myofibres and expression patterns of myogenin and eMyHC. To explore whether PAK4 inhibition improves muscle regeneration, mice were injected intramuscularly with siRNA that targeted PAK4 or orally administered with a chemical inhibitor of PAK4. RESULTS: p21-activated kinase 4 was highly expressed during the myoblast stage, but expression gradually and substantially decreased as myoblasts differentiated into myotubes. PAK4 overexpression, but not kinase-inactive mutant PAK4S474A overexpression, significantly impeded myoblast fusion and MyHC-positive myotube formation in C2C12 cells, primary myoblasts, and satellite cells (P < 0.01). Conversely, PAK4 silencing led to an 8.7% and a 20.3% increase in the number of multinucleated larger myotubes in C2C12 cells and primary myoblasts. Further, in vivo overexpression of PAK4 by adenovirus injection to mice prior to and after myotoxin-induced injury led to a 52.6% decrease in the number of eMyHC-positive myofibres on Day 5 in tibialis anterior muscles as compared with those injected with control adenoviruses (P < 0.01), while Ad-PAK4S474A showed comparable muscle regeneration parameters. PAK4-induced repression of muscle regeneration coincided with an increase in phosphatase and tensin homologue (PTEN) expression and a decrease in phosphoinositide 3-kinase-Akt signalling. In contrast, PAK4 silencing reduced PTEN expression in mice. Consistent with these findings, prodrug of PAK4 inhibitor CZh-226 (30 mg/kg) orally administered to mice repressed PTEN expression and accelerated myotube formation. Subsequent mechanistic studies revealed that PAK4 directly phosphorylates PPARγ at S273 to increase its transcription activity, thereby up-regulating PTEN expression. Importantly, an analysis of the Genotype-Tissue Expression database showed a positive correlation between PAK4 and PTEN in human skeletal muscle tissues (P < 0.01). CONCLUSIONS: p1-activated kinase 4 is a new member of PPARγ kinase, and PAK4 inhibition may have a therapeutic role as an accelerant of muscle regeneration.


Assuntos
Receptores Ativados por Proliferador de Peroxissomo , Quinases Ativadas por p21 , Animais , Camundongos , Músculo Esquelético , PPAR gama , Fosfatidilinositol 3-Quinases , Regeneração , Quinases Ativadas por p21/genética
5.
Hepatology ; 73(4): 1307-1326, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32557804

RESUMO

BACKGROUND AND AIMS: Fat accumulation results from increased fat absorption and/or defective fat metabolism. Currently, the lipid-sensing nuclear receptor that controls fat utilization in hepatocytes is elusive. Liver X receptor alpha (LXRα) promotes accumulation of lipids through the induction of several lipogenic genes. However, its effect on lipid degradation is open for study. Here, we investigated the inhibitory role of LXRα in autophagy/lipophagy in hepatocytes and the underlying basis. APPROACH AND RESULTS: In LXRα knockout mice fed a high-fat diet, or cell models, LXRα activation suppressed the function of mitochondria by inhibiting autophagy/lipophagy and induced hepatic steatosis. Gene sets associated with "autophagy" were enriched in hepatic transcriptome data. Autophagy flux was markedly augmented in the LXRα knockout mouse liver and primary hepatocytes. Mechanistically, LXRα suppressed autophagy-related 4B cysteine peptidase (ATG4B) and Rab-8B, responsible for autophagosome and -lysosome formation, by inducing let-7a and microRNA (miR)-34a. Chromatin immunoprecipitation assay enabled us to find LXRα as a transcription factor of let-7a and miR-34a. Moreover, 3' untranslated region luciferase assay substantiated the direct inhibitory effects of let-7a and miR-34a on ATG4B and Rab-8B. Consistently, either LXRα activation or the let-7a/miR-34a transfection lowered mitochondrial oxygen consumption rate and mitochondrial transmembrane potential and increased fat levels. In obese animals or nonalcoholic fatty liver disease (NAFLD) patients, let-7a and miR-34a levels were elevated with simultaneous decreases in ATG4B and Rab-8B levels. CONCLUSIONS: LXRα inhibits autophagy in hepatocytes through down-regulating ATG4B and Rab-8B by transcriptionally activating microRNA let-7a-2 and microRNA 34a genes and suppresses mitochondrial biogenesis and fuel consumption. This highlights a function of LXRα that culminates in the progression of liver steatosis and steatohepatitis, and the identified targets may be applied for a therapeutic strategy in the treatment of NAFLD.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Cisteína Endopeptidases/metabolismo , Hepatócitos/metabolismo , Receptores X do Fígado/metabolismo , Mitocôndrias/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Ativação Metabólica , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Cisteína Endopeptidases/genética , Modelos Animais de Doenças , Progressão da Doença , Regulação para Baixo , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Células Hep G2/metabolismo , Células Hep G2/fisiologia , Hepatócitos/fisiologia , Humanos , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Fígado/fisiologia , Fígado/fisiopatologia , Receptores X do Fígado/genética , Receptores X do Fígado/fisiologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/fisiologia , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Biogênese de Organelas , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia , Transcriptoma , Proteínas rab de Ligação ao GTP/genética
6.
Theranostics ; 10(25): 11416-11427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052223

RESUMO

Rationale: Statin, the most widely used medication in lowering cholesterol, is also associated with increased risk of type 2 diabetes, but its molecular basis remains unclear. Methods: Mice were injected intraperitoneally with statins alone or in combination with sirtuin (Sirt) 6 activator, and blood glucose levels were measured. Liver tissues from patients with statin use were analyzed for the expression of Sirt6. Results: Statin treatment up-regulated the hepatic expression of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, which was prevented by Sirt6 overexpression. Mechanistically, statin directly repressed Sirt6 expression by induction of microRNA (miR)-495, a novel inhibitor of Sirt6. Pathway analysis for predicted target genes of miR-495 recognized forkhead box protein (Fox)O1 as a key downstream signaling of Sirt6. Statin treatment increased the acetylation and protein stability of FoxO1, which was suppressed by Sirt6 overexpression. Inhibiting miR-495 recovered Sirt6 levels, blocking the ability of statin to increase FoxO1 mediated gluconeogenesis, and thus confirming the role of the miR-495/Sirt6/FoxO1 pathway in controlling gluconeogenesis. Moreover, the Sirt6 activator MDL801 prevented gluconeogenesis and hyperglycemia induced by statin in mice. Equally noteworthy was that human liver tissues obtained from statin users showed a significant decrease in Sirt6 protein levels compared to those of non-users. Conclusion: Statin induces miR-495 to suppress Sirt6 expression, which leads to enhancement of FoxO1-mediated hepatic gluconeogenesis. Thus, Sirt6 activation may offer a promising strategy for preventing statin-induced hyperglycemia.


Assuntos
Diabetes Mellitus Tipo 2/induzido quimicamente , Gluconeogênese/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , MicroRNAs/agonistas , Sirtuínas/antagonistas & inibidores , Adulto , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/prevenção & controle , Feminino , Proteína Forkhead Box O1/metabolismo , Gluconeogênese/genética , Glucose-6-Fosfatase/metabolismo , Hepatócitos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Injeções Intraperitoneais , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Cultura Primária de Células , Sirtuínas/análise , Sirtuínas/genética , Sirtuínas/metabolismo , Adulto Jovem
7.
Toxicol Appl Pharmacol ; 379: 114665, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31323261

RESUMO

Ferroptosis is the non-apoptotic form of cell death caused by small molecules or conditions that inhibit glutathione biosynthesis or resulting in iron-dependent accumulation of lipid peroxidation by lipid reactive oxygen species (ROS). Sestrin2 (Sesn2), a conserved antioxidant protein, is responsive to various stresses including genotoxic, metabolic, and oxidative stresses and acts to restore homeostatic balance. Sesn2 expression was reported to be regulated via stress-responsive transcription factors including p53, Nrf2, and HIF-1α. However, the role of Sesn2 in regulating ferroptosis is not known. In the current study, we investigated whether ferroptosis inducing compounds including erastin, sorafenib, and buthionine sulfoximine affect Sesn2 expression and the role of Sesn2 in cytoprotection against ferroptosis-mediated cell death. Our data demonstrate that ferroptosis inducers significantly increased Sesn2 in hepatocytes in a dose- and time-dependent manner. Treatment with erastin upregulated Sesn2 mRNA levels and luciferase reporter gene activity, and erastin-mediated Sesn2 induction was transcriptionally regulated by NF-E2-related factor 2 (Nrf2). Furthermore, deletion of the antioxidant response element (ARE) in the Sesn2 promoter or Nrf2 knockout or knockdown abolished erastin-induced Sesn2 expression. In cells expressing Sesn2, erastin-induced cell death, ROS formation, and glutathione depletion were almost completely inhibited compared to that in control cells. Treatment with phenylhydrazine in mice, well-reported iron overload liver injury model, increased ALT and AST levels and altered histological features, which were almost completely inhibited by adenoviral Sesn2 infection. Collectively, our results suggest that ferroptosis-mediated Sesn2 induction is dependent on Nrf2 and plays a protective role against iron overload and ferroptosis-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ferroptose , Sobrecarga de Ferro/complicações , Proteínas Nucleares/fisiologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Glutationa/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Sobrecarga de Ferro/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos ICR , Camundongos Knockout , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase , Espécies Reativas de Oxigênio/metabolismo
8.
Int J Mol Sci ; 19(7)2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013008

RESUMO

Farnesoid X receptor (FXR), a metabolic nuclear receptor, plays critical roles in the maintenance of systemic energy homeostasis and the integrity of many organs, including liver and intestine. It regulates bile acid, lipid, and glucose metabolism, and contributes to inter-organ communication, in particular the enterohepatic signaling pathway, through bile acids and fibroblast growth factor-15/19 (FGF-15/19). The metabolic effects of FXR are also involved in gut microbiota. In addition, FXR has various functions in the kidney, adipose tissue, pancreas, cardiovascular system, and tumorigenesis. Consequently, the deregulation of FXR may lead to abnormalities of specific organs and metabolic dysfunction, allowing the protein as an attractive therapeutic target for the management of liver and/or metabolic diseases. Indeed, many FXR agonists have been being developed and are under pre-clinical and clinical investigations. Although obeticholic acid (OCA) is one of the promising candidates, significant safety issues have remained. The effects of FXR modulation might be multifaceted according to tissue specificity, disease type, and/or energy status, suggesting the careful use of FXR agonists. This review summarizes the current knowledge of systemic FXR biology in various organs and the gut⁻liver axis, particularly regarding the recent advancement in these fields, and also provides pharmacological aspects of FXR modulation for rational therapeutic strategies and novel drug development.


Assuntos
Tecido Adiposo/metabolismo , Sistema Cardiovascular/metabolismo , Metabolismo Energético , Rim/metabolismo , Pâncreas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Homeostase , Humanos
9.
J Hepatol ; 68(3): 493-504, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29080810

RESUMO

BACKGROUND & AIMS: Hepatic stellate cells (HSCs) have a role in liver fibrosis. Guanine nucleotide-binding α-subunit 12 (Gα12) converges signals from G-protein-coupled receptors whose ligand levels are elevated in the environment during liver fibrosis; however, information is lacking on the effect of Gα12 on HSC trans-differentiation. This study investigated the expression of Gα12 in HSCs and the molecular basis of the effects of its expression on liver fibrosis. METHODS: Gα12 expression was assessed by immunostaining, and immunoblot analyses of mouse fibrotic liver tissues and primary HSCs. The role of Gα12 in liver fibrosis was estimated using a toxicant injury mouse model with Gα12 gene knockout and/or HSC-specific Gα12 delivery using lentiviral vectors, in addition to primary HSCs and LX-2 cells using microRNA (miR) inhibitors, overexpression vectors, or adenoviruses. miR-16, Gα12, and LC3 were also examined in samples from patients with fibrosis. RESULTS: Gα12 was overexpressed in activated HSCs and fibrotic liver, and was colocalised with desmin. In a carbon tetrachloride-induced fibrosis mouse model, Gα12 ablation prevented increases in fibrosis and liver injury. This effect was attenuated by HSC-specific lentiviral delivery of Gα12. Moreover, Gα12 activation promoted autophagy accompanying c-Jun N-terminal kinase-dependent ATG12-5 conjugation. In addition, miR-16 was found to be a direct inhibitor of the de novo synthesis of Gα12. Modulations of miR-16 altered autophagy in HSCs. In a fibrosis animal model or patients with severe fibrosis, miR-16 levels were lower than in their corresponding controls. Consistently, cirrhotic patient liver tissues showed Gα12 and LC3 upregulation in desmin-positive areas. CONCLUSIONS: miR-16 dysregulation in HSCs results in Gα12 overexpression, which activates HSCs by facilitating autophagy through ATG12-5 formation. This suggests that Gα12 and its regulatory molecules could serve as targets for the amelioration of liver fibrosis. LAY SUMMARY: Guanine nucleotide-binding α-subunit 12 (Gα12) is upregulated in activated hepatic stellate cells (HSCs) as a consequence of the dysregulation of a specific microRNA that is abundant in HSCs, facilitating the progression of liver fibrosis. This event is mediated by c-Jun N-terminal kinase-dependent ATG12-5 formation and the promotion of autophagy. We suggest that Gα12 and its associated regulators could serve as new targets in HSCs for the treatment of liver fibrosis.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática , MicroRNAs/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Regulação da Expressão Gênica , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Inibidores de Serina Proteinase/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
10.
Nat Commun ; 7: 13817, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004654

RESUMO

Hepatic stellate cell (HSC) activation on liver injury facilitates fibrosis. Hepatokines affecting HSCs are largely unknown. Here we show that hepcidin inhibits HSC activation and ameliorates liver fibrosis. We observe that hepcidin levels are inversely correlated with exacerbation of fibrosis in patients, and also confirm the relationship in animal models. Adenoviral delivery of hepcidin to mice attenuates liver fibrosis induced by CCl4 treatment or bile duct ligation. In cell-based assays, either hepcidin from hepatocytes or exogenous hepcidin suppresses HSC activation by inhibiting TGFß1-mediated Smad3 phosphorylation via Akt. In activated HSCs, ferroportin is upregulated, which can be prevented by hepcidin treatment. Similarly, ferroportin knockdown in HSCs prohibits TGFß1-inducible Smad3 phosphorylation and increases Akt phosphorylation, whereas ferroportin over-expression has the opposite effect. HSC-specific ferroportin deletion also ameliorates liver fibrosis. In summary, hepcidin suppresses liver fibrosis by impeding TGFß1-induced Smad3 phosphorylation in HSCs, which depends on Akt activated by a deficiency of ferroportin.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Células Estreladas do Fígado/metabolismo , Hepcidinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Smad3/metabolismo , Animais , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/genética , Técnicas de Silenciamento de Genes , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Hepcidinas/genética , Hepcidinas/farmacologia , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
11.
Mol Pharm ; 10(7): 2517-27, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23763570

RESUMO

Our previous studies have shown that multidrug resistance protein 2 (MRP2) is overexpressed in tamoxifen-resistant MCF-7 breast cancer cells (TAMR-MCF-7 cells) and forkhead box-containing protein, O subfamily1 (FoxO1), functions as a key regulator of multidrug resistance 1 (MDR1) gene transcription. This study aimed to investigate the role of FoxO1 in regulating MRP2 gene expression in TAMR-MCF-7 cells. The proximal promoter region of the human MRP2 gene contains four putative FoxO binding sites, and MRP2 gene transcription was stimulated by FoxO1 overexpression in MCF-7 cells. Subcellular fractionation and immunoblot analyses revealed that basal MRP2 expression and nuclear levels of FoxO1 were enhanced in TAMR-MCF-7 cells compared to MCF-7 cells and the enhanced MRP2 gene transcription was suppressed by FoxO1 siRNA. Because nuclear localization of FoxO1 is regulated by SIRT1 deacetylase, we were further interested in whether SIRT1 is involved in MRP2 expression. Overexpression of SIRT1 with FoxO1 potentiated the gene transcriptional activity of MRP2, and the basal activity and expression of SIRT1 was increased in TAMR-MCF-7 cells. In addition, SIRT1 inhibition reduced both the nuclear FoxO1 levels and MRP2 expression and enhanced cytotoxic effects of paclitaxel and doxorubicin in TAMR-MCF-7 cells. These results suggest that FoxO1 activation via SIRT1-mediated deacetylation is closely related with up-regulation of MRP2 in TAMR-MCF-7 cells.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sirtuína 1/metabolismo , Tamoxifeno/farmacologia , Acetilação/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Células MCF-7 , Proteína 2 Associada à Farmacorresistência Múltipla , Sirtuína 1/genética , Regulação para Cima
12.
Biochem Biophys Res Commun ; 410(1): 68-74, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21640077

RESUMO

Ultraviolet A (UVA) radiation (λ = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, we demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm(2)) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.


Assuntos
Transformação Celular Neoplásica/metabolismo , Epiderme/enzimologia , Epiderme/efeitos da radiação , Peptidilprolil Isomerase/fisiologia , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/etiologia , Acetilcisteína/farmacologia , Animais , Linhagem Celular , Proliferação de Células , Transformação Celular Neoplásica/patologia , Ciclina D1/biossíntese , Epiderme/patologia , Humanos , Camundongos , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/patologia , Fator de Transcrição AP-1/metabolismo , Raios Ultravioleta
13.
Arterioscler Thromb Vasc Biol ; 31(4): 861-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21212405

RESUMO

OBJECTIVE: Gα(12/13) play a role in oncogenic transformation and tumor growth. Cysteine-rich protein 61 (CYR61) is a growth-factor-inducible angiogenic factor. In view of potential overlapping functions between Gα(12/13) and CYR61, this study investigated the role of these G proteins in CYR61 induction in association with hyperplastic vascular abnormality. METHODS AND RESULTS: Overexpression of activated Gα(12) or Gα(13) induced CYR61 expression in vascular smooth muscle cells (VSMCs). Gene knockdown and knockout experiments revealed that sphingosine-1-phosphate (S1P) treatment induced CYR61 via Gα(12/13). JunD/activator protein-1 (AP-1) was identified as a transcription factor required for CYR61 transactivation by S1P. Deficiencies in Gα(12/13) abrogated AP-1 activation and AP-1-mediated CYR61 induction. c-Jun N-terminal kinase was responsible for CYR61 induction. Moreover, deficiencies of Gα(12/13) abolished c-Jun N-terminal kinase-dependent CYR61 induction by S1P. N-acetyl-l-cysteine or NADPH oxidase inhibitor treatment reversed CYR61 induction by S1P, indicating that reactive oxygen species are responsible for this process. The levels of Gα(12/13) were increased within thickened intimas and medias in wire-injured mouse femoral arteries, which was accompanied by simultaneous CYR61 induction. Moreover, Gα(12/13) and CYR61 were costained in the arteriosclerotic lesions immediately adjacent to human tumor tissues. CONCLUSIONS: Gα(12/13) regulate AP-1-dependent CYR61 induction in VSMCs and promote VSMC migration, and they are upregulated with CYR61 in arteriosclerotic lesions.


Assuntos
Arteriosclerose/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Lisofosfolipídeos/metabolismo , Músculo Liso Vascular/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Túnica Íntima/metabolismo , Idoso , Animais , Arteriosclerose/genética , Arteriosclerose/patologia , Movimento Celular , Proteína Rica em Cisteína 61/genética , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/deficiência , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Hiperplasia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Mutação , NADPH Oxidases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-jun/metabolismo , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Esfingosina/metabolismo , Fator de Transcrição AP-1/metabolismo , Transfecção , Túnica Íntima/patologia , Regulação para Cima
14.
World J Gastroenterol ; 16(30): 3731-42, 2010 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-20698033

RESUMO

The adenosine monophosphate-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 pathway may serve as a key signaling flow that regulates energy metabolism; thus, this pathway becomes an attractive target for the treatment of liver diseases that result from metabolic derangements. In addition, AMPK emerges as a kinase that controls the redox-state and mitochondrial function, whose activity may be modulated by antioxidants. A close link exists between fuel metabolism and mitochondrial biogenesis. The relationship between fuel metabolism and cell survival strongly implies the existence of a shared signaling network, by which hepatocytes respond to challenges of external stimuli. The AMPK pathway may belong to this network. A series of drugs and therapeutic candidates enable hepatocytes to protect mitochondria from radical stress and increase cell viability, which may be associated with the activation of AMPK, liver kinase B1, and other molecules or components. Consequently, the components downstream of AMPK may contribute to stabilizing mitochondrial membrane potential for hepatocyte survival. In this review, we discuss the role of the AMPK pathway in hepatic energy metabolism and hepatocyte viability. This information may help identify ways to prevent and/or treat hepatic diseases caused by the metabolic syndrome. Moreover, clinical drugs and experimental therapeutic candidates that directly or indirectly modulate the AMPK pathway in distinct manners are discussed here with particular emphasis on their effects on fuel metabolism and mitochondrial function.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Hepatócitos/enzimologia , Hepatopatias/enzimologia , Fígado/enzimologia , Transdução de Sinais , Animais , Apoptose , Sobrevivência Celular , Citoproteção , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Mitocôndrias Hepáticas/enzimologia , Transdução de Sinais/efeitos dos fármacos
15.
Carcinogenesis ; 29(9): 1837-44, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18390843

RESUMO

The development of multidrug resistance 1 (MDR1) can be mediated by a number of different mechanisms but elevated gene expression of MDR1 (P-glycoprotein) has often been a major cause of chemoresistance in many cancer cells. Therefore, the present study aimed to investigate the role of forkhead box-containing protein, O subfamily (FoxO), transcription factors in regulating the MDR1 gene expression. The proximal promoter region of the human MDR1 contained a putative FoxO-binding site, which partially overlapped with the enhancer/enhancer-binding protein beta-binding region. Gel shift and immunoblot analysis of subcellular fractions revealed that nuclear levels of FoxO1 and its DNA-binding activity were selectively enhanced in MCF-7/ADR cells, which was reversed by a FoxO1 antibody. Reporter gene assays showed that the transcription of MDR1 gene is stimulated by FoxO1 overexpression. Moreover, both MDR1 expression and doxorubicin resistance in MCF-7/ADR cells were reversed by FoxO1 small interfering RNA (siRNA). The MDR1 expression in MCF-7/ADR cells was also inhibited by insulin, a functional FoxO1 inactivator. In conclusion, FoxO1 is a novel transcriptional activator of MDR1 and is crucial for MDR1 induction in MCF-7/ADR cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição Forkhead/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Núcleo Celular/metabolismo , Resistência a Múltiplos Medicamentos , Ensaio de Desvio de Mobilidade Eletroforética , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Immunoblotting , Insulina/farmacologia , Plasmídeos , Receptor de Pregnano X , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Ativação Transcricional/efeitos dos fármacos , Células Tumorais Cultivadas
16.
Cancer Sci ; 99(3): 502-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18177484

RESUMO

Ultraviolet (UV) A (320-400 nm), which constitutes more than 90% of UV radiation in the sunlight that reaches the earth's surface, is considered a major cause of human skin photo-aging and skin cancer. Exposure of keratinocytes to UVA has previously been reported to lead to the activation of a variety of epidermal growth factor receptors (EGFR), including ErbB2, and ErbB2 activation is involved in skin tumor development. Here, we demonstrate that ErbB2 expression is enhanced by low-energy UVA (300-3000 mJ/cm(2)) irradiation in the skin tissues of both hairless mice and HaCaT keratinocytes. Luciferase reporter-gene activity using the 756-bp flanking region of the human erbB2 gene was increased by UVA irradiation. UVA irradiation also selectively increased the levels of activator protein (AP)-2 alpha, but not AP-2 beta and AP-2 gamma. The increase in the reporter gene activity of HaCaT cells exposed to UVA was abolished by mutation of the two AP-2 binding sites in the promoter region of the erbB2 gene. Inhibition of cAMP-dependent protein kinase caused complete blockage of ErbB2 induction and AP-2 alpha activation by UVA irradiation. Finally, we reveal that pre-exposure of HaCaT cells to UVA potentiates EGF-inducible anchorage-independent growth of the keratinocytes, which is significantly suppressed by ErbB2 inhibition. These results support the hypothesis that UVA enhances the expression of ErbB2 via cAMP- and protein kinase-dependent AP-2 alpha activation in keratinocytes, which may serve as a key mechanistic basis for the malignant transformation of keratinocytes exposed to UVA irradiation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Receptor ErbB-2/metabolismo , Raios Ultravioleta , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Imuno-Histoquímica , Queratinócitos/enzimologia , Camundongos , Camundongos Pelados , Receptor ErbB-2/genética , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Fator de Transcrição AP-2/metabolismo , Células Tumorais Cultivadas
17.
Mol Pharmacol ; 72(4): 1082-93, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17615245

RESUMO

Insulin-like growth factor type I receptor (IGF-IR) is frequently overexpressed in human hepatocellular carcinoma cells (HCC), and this overexpression has been correlated with increased tumor growth. The protective response of HCC to reactive oxygen species (ROS) produced by chemotherapeutic agents is mediated with the induction of phase II detoxifying genes including glutathione transferase (GST). To understand the roles of IGF-IR overexpression in HCC in terms of its detoxifying effect on ROS and conferred resistance to chemotherapy, we analyzed whether IGF-IR overexpressions affect IGF-1-inducible GST expression. GSTalpha was induced by exposure to IGF-1 in IGF-IR cells but not in cells expressing normal levels of IGF-IR. Furthermore, IGF-IR-overexpressed HCCs (IR-HCC) are more resistant to doxorubicin than control HCC cells, which was associated with the increased GST induction by IGF-1. Molecular analyses using GSTA2 promoter supported the involvement of xenobiotic response element (XRE) in GSTalpha induction. IGF-1 caused the nuclear translocation of CCAAT/enhancer-binding protein beta (C/EBPbeta), which might be responsible for XRE activation. In addition, IGF-1 increased the activities of phosphatidylinositol 3-kinase (PI3-kinase) and extracellular signal-regulated kinase in IR-HCCs. Moreover, the inhibition of PI3-kinase completely abolished the nuclear translocation of C/EBPbeta and the up-regulation of GSTalpha protein in IR-HCC treated with IGF-1. However, specific inhibitors against extracellular signal-regulated kinase, c-Jun N-terminal kinase, or p38 kinase did not alter IGF-1-inducible GSTalpha expression. These results provide evidence that one of the pathological consequences of IGF-IR overexpression in HCCs is the potentiation of GSTalpha inducibility by IGF-1. Moreover, this potentiation of GST may be associated with decreased susceptibility to chemotherapeutic agents such as doxorubicin.


Assuntos
Carcinoma Hepatocelular/metabolismo , Glutationa Transferase/biossíntese , Neoplasias Hepáticas/metabolismo , Receptor IGF Tipo 1/metabolismo , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Divisão Celular , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Indução Enzimática , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor IGF Tipo 1/genética
18.
Endocr Relat Cancer ; 14(2): 293-303, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17639045

RESUMO

Acquired resistance to tamoxifen (TAM) is a serious therapeutic problem in breast cancer patients. The transition from chemotherapy-responsive breast cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multidrug resistance-associated proteins (MRPs). In this study, it was found that TAM-resistant MCF-7 (TAMR-MCF-7) cells expressed higher levels of MRP2 than control MCF-7 cells. Molecular analyses using MRP2 gene promoters supported the involvement of the pregnane X receptor (PXR) in MRP2 overexpression in TAMR-MCF-7 cells. Although CCAAT/enhancer-binding protein beta was overexpressed continuously in TAMR-MCF-7 cells, this might not be responsible for the transcriptional activation of the MRP2 gene. In addition, the basal activities of phosphatidylinositol 3-kinase (PI3-kinase) were higher in the TAMR-MCF-7 cells than in the control cells. The inhibition of PI3-kinase significantly reduced both the PXR activity and MRP2 expression in TAMR-MCF-7 cells. Overall, MRP2 induction plays a role in the additional acquisition of chemotherapy resistance in TAM-resistant breast cancer.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Tamoxifeno/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Aromatase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Pregnano X , Regiões Promotoras Genéticas , Receptores de Esteroides/metabolismo , Ativação Transcricional , Regulação para Cima , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
19.
Biochem Biophys Res Commun ; 357(2): 567-73, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17433259

RESUMO

The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1alpha (HIF-1alpha) and induced the nuclear translocation of C/EBPbeta. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1alpha siRNA but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1alpha activation, and suggest HIF-1alpha for the therapeutic target of HBV-mediated chemoresistance.


Assuntos
Carcinoma Hepatocelular/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rodamina 123/farmacocinética , Verapamil/farmacocinética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Ratos , Proteínas Recombinantes/metabolismo , Transativadores , Proteínas Virais Reguladoras e Acessórias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA