Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241245939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38752263

RESUMO

OBJECTIVES: Small nucleolar RNAs (snoRNAs) form clusters within the genome, representing a mysterious category of small non-coding RNAs. Research has demonstrated that aberrant snoRNAs can contribute to the development of various types of cancers. Recent studies have identified snoRNAs as potentially valuable biomarkers for the diagnosis or/and prognosis of cancers. However, there has been a lack of comprehensive reviews on prognostic and diagnostic snoRNAs across different types of cancers. METHODS: We conducted a systematic search of various databases including Google Scholar, Medline, Cochrane, Scopus, PubMed, Embase, ScienceDirect, Ovid-Medline, Chinese National Knowledge Infrastructure, WanFang, and SinoMed with a time frame reception to December 30, 2022. A total of 49 relevant articles were included in our analysis, consisting of 21 articles focusing on diagnostic aspects and 41 articles focusing on prognostic aspects. Pooled odds ratio, 95% confidence intervals (CIs), and hazard ratio (HR) were utilized to evaluate clinical parameters and overall survival (OS), respectively. RESULT: The findings indicated that area under the curve, sensitivity, and specificity were 0.85, 75%, and 80% in cancer, respectively. There was a possibility that snoRNAs had a positive impact on the diagnosis (risk ratio, RR = 2.95, 95% CI: 2.75-3.16, P = 0.000) and OS (HR = 1) in cancer. Additionally, abnormally expressed snoRNAs were associated with a positive impact on OS time for chronic lymphocytic leukemia (HR: 0.88, 95%Cl: 0.69-1.11, P < 0.00001), colon adenocarcinoma (HR: 0.97, 95%Cl: 0.91-1.03, P < 0.0001), and ovarian cancer (HR: 0.98, 95%Cl: 0.98-0.99, P < 0.00001). However, dysregulated snoRNAs of colon cancer and colorectal cancer had a negative impact on OS time (HR = 3.01 and 1.01 respectively, P < 0.0001). CONCLUSION: The results strongly suggested that snoRNAs could serve as potential novel indicators for prognosis and diagnosis in cancers. This systematic review followed the guidelines of the Transparent Reporting of Systematic Review and Meta-Analyses (PROSPERO register: CRD42020209096).


Assuntos
Biomarcadores Tumorais , Neoplasias , RNA Nucleolar Pequeno , Humanos , RNA Nucleolar Pequeno/genética , Biomarcadores Tumorais/genética , Prognóstico , Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/mortalidade , Curva ROC
2.
Cancers (Basel) ; 16(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38672598

RESUMO

Although grading is defined by the highest histological grade observed in a glioma, most high-grade gliomas retain areas with histology reminiscent of their low-grade counterparts. We sought to achieve the following: (i) identify proteins and molecular pathways involved in glioma evolution; and (ii) validate the high mobility group protein B2 (HMGB2) as a key player in tumor progression and as a prognostic/predictive biomarker for diffuse astrocytomas. We performed liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple areas of adult-type astrocytomas and validated our finding in multiplatform-omics studies and high-throughput IHC analysis. LC-MS/MSdetected proteomic signatures characterizing glioma evolution towards higher grades associated with, but not completely dependent, on IDH status. Spatial heterogeneity of diffuse astrocytomas was associated with dysregulation of specific molecular pathways, and HMGB2 was identified as a putative driver of tumor progression, and an early marker of worse overall survival in grades 2 and 3 diffuse gliomas, at least in part regulated by DNA methylation. In grade 4 astrocytomas, HMGB2 expression was strongly associated with proliferative activity and microvascular proliferation. Grounded in proteomic findings, our results showed that HMGB2 expression assessed by IHC detected early signs of tumor progression in grades 2 and 3 astrocytomas, as well as identified GBMs that had a better response to the standard chemoradiation with temozolomide.

3.
Sci Rep ; 13(1): 12424, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528172

RESUMO

GBM (Glioblastoma) is the most lethal CNS (Central nervous system) tumor in adults, which inevitably develops resistance to standard treatments leading to recurrence and mortality. TRIB1 is a serine/threonine pseudokinase which functions as a scaffold platform that initiates degradation of its substrates like C/EBPα through the ubiquitin proteasome system and also activates MEK and Akt signaling. We found that increased TRIB1 gene expression associated with worse overall survival of GBM patients across multiple cohorts. Importantly, overexpression of TRIB1 decreased RT/TMZ (radiation therapy/temozolomide)-induced apoptosis in patient derived GBM cell lines in vitro. TRIB1 directly bound to MEK and Akt and increased ERK and Akt phosphorylation/activation. We also found that TRIB1 protein expression was maximal during G2/M transition of cell cycle in GBM cells. Furthermore, TRIB1 bound directly to HDAC1 and p53. Importantly, mice bearing TRIB1 overexpressing tumors had worse overall survival. Collectively, these data suggest that TRIB1 induces resistance of GBM cells to RT/TMZ treatments by activating the cell proliferation and survival pathways thus providing an opportunity for developing new targeted therapeutics.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Apoptose/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166370, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231545

RESUMO

The Ca2+-activated Cl- channel ANO1 is widely expressed in epithelial cells, and ANO1 upregulation is implicated in the oncogenesis of many epithelium-originated cancers. However, whether ANO1 plays a causal role in the tumorigenesis of colorectal cancer remains largely unknown. Here, we show that ANO1 channel protein is upregulated in human colorectal cancer tissue samples and its upregulation is correlated with the TNM staging, histological type, pathological differentiation and poor prognosis. Knockdown or pharmacological inhibition of ANO1 suppresses colorectal cancer cell proliferation and induces cell apoptosis. Furthermore, ANO1 knockdown inhibits the growth of subcutaneous xenograft tumors implanted with colorectal cancer HT-29 cells in nude mice. Mechanically, knockdown of endogenous ANO1 inactivates the Wnt/ß-catenin signaling through downregulating critical components, such as Frizzled protein 1, ß-catenin and upregulating GSK3ß. Taken together, our results demonstrate that ANO1 upregulation is involved in the tumorigenesis of colorectal cancer, and inhibition of ANO1 upregulation or inactivating downstream Wnt/ß-catenin signaling may have therapeutic potential for colorectal cancer.


Assuntos
Anoctamina-1 , Neoplasias Colorretais , Proteínas de Neoplasias , Animais , Anoctamina-1/genética , Anoctamina-1/metabolismo , Carcinogênese/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HT29 , Humanos , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regulação para Cima
5.
Ann Clin Microbiol Antimicrob ; 21(1): 9, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35232448

RESUMO

BACKGROUND: Olsenella uli is anaerobic or microaerophilic bacteria, commonly found in oral cavity or gastrointestinal tract, which has not been reported to be associated with lower respiratory tract infection. Herein, we report the first case of Olsenella uli infection in the lung. CASE PRESENTATION: A 70-year-old male farmer with no history of other respiratory tract diseases developed a cough with bloody sputum three times a day without obvious causes or other concomitant symptoms. After a period of treatment with empirical antibiotic, his condition did not improve. The computed tomography (CT) and lung biopsy results indicated bilateral pneumonia, and Olsenella uli was identified by micromorphology, sequence analysis and mass spectrometry analysis recovered from sputum. Ceftazidime, a third generation cephalosporin was used for the treatment, and the patient recovered after 10 days. CONCLUSIONS: Our report suggests a causative role of gingival bacteria in the pathogenesis of pneumonia, thus early diagnosis and prompt antibiotic therapy may play a role in the treatment of Olsenella uli induced pneumonia.


Assuntos
Actinobacteria , Actinobacteria/genética , Idoso , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Pneumonia Bacteriana/diagnóstico , Pneumonia Bacteriana/tratamento farmacológico , RNA Ribossômico 16S
6.
DNA Repair (Amst) ; 108: 103230, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571449

RESUMO

DNA lesion bypass facilitates DNA synthesis across bulky DNA lesions, playing a critical role in DNA damage tolerance and cell survival after DNA damage. Assessing lesion bypass efficiency in the cell is important to better understanding of the mechanism of carcinogenesis and chemoresistance. Here we developed a chromatin immunoprecipitation (ChIP)-based method to measure lesion bypass activity across cisplatin-induced intrastrand crosslinks in cancer cells. DNA lesion bypass enables the replication to continue in the presence of replication blocks. Thus, the successful lesion bypass should result in the coexistence of DNA lesions and the newly synthesized DNA fragment opposite to this lesion. Using ChIP, we precipitated the cisplatin-induced intrastrand crosslinks, and quantitated the precipitated newly synthesized DNA that was labeled with BrdU. We validated this method on ovarian cancer cells with inhibited TLS activity. We then applied this method to show that ovarian cancer stem cells exhibit high lesion bypass activity relative to bulk cancer cells from the same cell line. In conclusion, this novel ChIP-based lesion bypass assay can detect the extent to which cisplatin-induced DNA lesions are bypassed in live cells. Our study may be applied more broadly to the study of other DNA lesions, as specific antibodies to these specific lesions are available.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , Imunoprecipitação da Cromatina , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo
7.
Artigo em Chinês | MEDLINE | ID: mdl-34304468

RESUMO

Objective:To analyze the bacteriological distribution and drug resistance of nasopharynx in patients with adenoid hypertrophy complicated with secretory otitis media, and to clarify the distribution of pathogenic bacteria, so as to provide guidance and basis for antibiotic use in clinical treatment. Methods:A retrospective analysis was performed on 311 patients with adenoid hypertrophy and secretory otitis media who underwent surgical treatment in the department of otolaryngology head and neck surgery, Affiliated Hospital of Qingdao University from February 2013 to January 2020. They were divided into 3 groups by age: Group A(0-5 years old), Group B(6-10 years old), and Group C(11-16 years old). The secretions from deep adenoid near the eustachian tube of the affected ear were collected during the surgery for bacterial culture and drug resistance analysis. Results:One hundred and forty-two strains of pathogenic bacteria were isolated and cultured, with a detection rate of 45.66%. Staphylococcus aureus (63 strains), streptococcus pneumoniae (15 strains) ,streptococcus pyogenes (13 strains) and moraxella cachinella(28 strains)was the main strain.Staphylococcus aureus had high drug resistance rate to penicillin, erythromycin and clindamycin.Streptococcus pneumoniae and Streptococcus pyogenic had high resistance rates to erythromycin,clindamycin and tetracycline. The resistance rate of Moraxella catarrhalis to ampicillin and co-trimoxazole was higher. Conclusion:The main pathogens detected in patients with adenoid hypertrophy complicated with secretory otitis media are staphylococcus aureus, streptococcus pneumoniae, streptococcus pyogenes and moraxella catarrhalis. Drug resistance of different pathogens is quite different. So it is recommended to carry out extensive bacteriological detection, and select antibiotics according to the principle of rational drug use and the results of drug resistance test, so as to achieve good therapeutic effect.


Assuntos
Tonsila Faríngea , Otite Média com Derrame , Otite Média , Adolescente , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Resistência a Medicamentos , Haemophilus influenzae , Humanos , Hipertrofia , Lactente , Recém-Nascido , Testes de Sensibilidade Microbiana , Nasofaringe , Otite Média/tratamento farmacológico , Otite Média com Derrame/tratamento farmacológico , Estudos Retrospectivos
8.
Microbiologyopen ; 9(9): e1099, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32592452

RESUMO

Gram stain is a subjective and poorly controlled test, and the resultant errors often perplex laboratory scientists. To reduce errors and make Gram stain a precisely controllable and meritorious test, a standardized Gram stain procedure for bacteria and inflammatory cells was developed using an automated staining instrument in this study. Freshly expectorated sputum specimens, used as the optimized targets, were smeared on slides by laboratory technicians, defining each slide loaded with uniform matrix and monolayer cell. And then, the staining and decolorizing time, as well as the stain and decolorant volume, were optimized as 15, 105, 1, and 25 s and 1.1, 1.4, 0.3, and 0.7 ml, respectively. Culture-positive blood specimens and original purulent fluids were used for confirming the developed standardized Gram stain procedure. Distinct tinctures of bacteria and inflammatory cells adhered to slide uniformly in a monolayer were observed, and the obtained staining results of these samples were highly consistent with their cultured results. Furthermore, according to the staining results under different staining conditions, an updated molecular mechanism of Gram stain for bacteria and the probable staining mechanism for inflammatory cells were also proposed in this study.


Assuntos
Bactérias/citologia , Técnicas Bacteriológicas/métodos , Violeta Genciana , Leucócitos/citologia , Fenazinas , Coloração e Rotulagem/métodos , Automação Laboratorial , Técnicas Bacteriológicas/instrumentação , Humanos , Manejo de Espécimes , Escarro/microbiologia , Coloração e Rotulagem/instrumentação , Fatores de Tempo
9.
Mol Cancer Ther ; 19(1): 199-210, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31534014

RESUMO

Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) are approved to treat recurrent ovarian cancer with BRCA1 or BRCA2 mutations, and as maintenance therapy for recurrent platinum-sensitive ovarian cancer (BRCA wild-type or mutated) after treatment with platinum. However, the acquired resistance against PARPi remains a clinical hurdle. Here, we demonstrated that PARP inhibitor (olaparib)-resistant epithelial ovarian cancer (EOC) cells exhibited an elevated aldehyde dehydrogenase (ALDH) activity, mainly contributed by increased expression of ALDH1A1 due to olaparib-induced expression of BRD4, a member of bromodomain and extraterminal (BET) family protein. We also revealed that ALDH1A1 enhanced microhomology-mediated end joining (MMEJ) activity in EOC cells with inactivated BRCA2, a key protein that promotes homologous recombination (HR) by using an intrachromosomal MMEJ reporter. Moreover, NCT-501, an ALDH1A1-selective inhibitor, can synergize with olaparib in killing EOC cells carrying BRCA2 mutation in both in vitro cell culture and the in vivo xenograft animal model. Given that MMEJ activity has been reported to be responsible for PARPi resistance in HR-deficient cells, we conclude that ALDH1A1 contributes to the resistance to PARP inhibitors via enhancing MMEJ in BRCA2-/- ovarian cancer cells. Our findings provide a novel mechanism underlying PARPi resistance in BRCA2-mutated EOC cells and suggest that inhibition of ALDH1A1 could be exploited for preventing and overcoming PARPi resistance in EOC patients carrying BRCA2 mutation.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Reparo do DNA , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Retinal Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1/antagonistas & inibidores , Família Aldeído Desidrogenase 1/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteína BRCA1/genética , Proteína BRCA2/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Reparo do DNA por Junção de Extremidades , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Nus , Mutação , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ftalazinas/administração & dosagem , Ftalazinas/farmacologia , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Retinal Desidrogenase/antagonistas & inibidores , Retinal Desidrogenase/genética , Teofilina/administração & dosagem , Teofilina/farmacologia , Fatores de Transcrição/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Res ; 79(9): 2314-2326, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894370

RESUMO

Cancer stem cells (CSC) play a central role in cancer metastasis and development of drug resistance. miRNA are important in regulating CSC properties and are considered potential therapeutic targets. Here we report that miR-328-3p (miR-328) is significantly upregulated in ovarian CSC. High expression of miR-328 maintained CSC properties by directly targeting DNA damage binding protein 2, which has been shown previously to inhibit ovarian CSC. Reduced activity of ERK signaling in ovarian CSC, mainly due to a low level of reactive oxygen species, contributed to the enhanced expression of miR-328 and maintenance of CSC. Inhibition of miR-328 in mouse orthotopic ovarian xenografts impeded tumor growth and prevented tumor metastasis. In summary, our findings provide a novel mechanism underlying maintenance of the CSC population in ovarian cancer and suggest that targeted inhibition of miR-328 could be exploited for the eradication of CSC and aversion of tumor metastasis in ovarian cancer. SIGNIFICANCE: These findings present inhibition of miR-328 as a novel strategy for efficient elimination of CSC to prevent tumor metastasis and recurrence in patients with epithelial ovarian cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cell Death Dis ; 9(5): 561, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29752431

RESUMO

Cancer stem cells (CSCs), representing the root of many solid tumors including ovarian cancer, have been implicated in disease recurrence, metastasis, and therapeutic resistance. Our previous study has demonstrated that the CSC subpopulation in ovarian cancer can be limited by DNA damage-binding protein 2 (DDB2). Here, we demonstrated that the ovarian CSC subpopulation can be maintained via cancer cell dedifferentiation, and DDB2 is able to suppress this non-CSC-to-CSC conversion by repression of ALDH1A1 transcription. Mechanistically, DDB2 binds to the ALDH1A1 gene promoter, facilitating the enrichment of histone H3K27me3, and competing with the transcription factor C/EBPß for binding to this region, eventually inhibiting the promoter activity of the ALDH1A1 gene. The de-repression of ALDH1A1 expression contributes to DDB2 silencing-augmented non-CSC-to-CSC conversion and expansion of the CSC subpopulation. We further showed that treatment with a selective ALDH1A1 inhibitor blocked DDB2 silencing-induced expansion of CSCs, and halted orthotopic xenograft tumor growth. Together, our data demonstrate that DDB2, functioning as a transcription repressor, can abrogate ovarian CSC properties by downregulating ALDH1A1 expression.


Assuntos
Aldeído Desidrogenase/biossíntese , Desdiferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas , Retinal Desidrogenase
12.
Oncotarget ; 9(18): 14481-14491, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581858

RESUMO

Cancer stem cells (CSCs) represent the root of many solid tumors including ovarian cancer. Eradication of CSCs represents a novel cancer therapeutic strategy. Calcitriol, also known as 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is an active metabolite of vitamin D, functioning as a potent steroid hormone. Calcitriol has shown anti-tumor effects in various cancers by regulating multiple signaling pathways. It has been reported that calcitriol can regulate the properties of normal and CSCs. However, the effect of calcitriol on the ovarian cancer growth and ovarian CSCs is still unclear. Here, by using a mouse subcutaneous xenograft model generated with human ovarian cancer cells, we have demonstrated that administration of calcitriol is able to strikingly delay the tumor growth. Calcitriol treatment can also deplete the ovarian CSC population characterized by ALDH+ and CD44+CD117+; decrease their capacity to form sphere under the CSC culture condition, and reduce the frequency of tumor-initiating cells, as evaluated by in vivo limiting dilution analysis. Mechanistic investigation revealed that calcitriol depletes CSCs via the nuclear vitamin D receptor (VDR)-mediated inhibition of the Wnt pathway. Furthermore, the activation of VDR pathway is more sensitive to calcitriol in ovarian CSCs than in non-CSCs, although the expression levels of VDR are comparable. Taken together, our data indicate that calcitriol is able to deplete the ovarian CSC population by inhibiting their Wnt signaling pathway, consequently, impeding the growth of xenograft tumors.

13.
Carcinogenesis ; 38(10): 976-985, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981631

RESUMO

Subunit 2 of DNA damage-binding protein complex (DDB2) is an early sensor of nucleotide excision repair (NER) pathway for eliminating DNA damage induced by UV radiation (UVR) and cisplatin treatments of mammalian cells. DDB2 is modified by ubiquitin and poly(ADP-ribose) (PAR) in response to UVR, and these modifications play a crucial role in regulating NER. Here, using immuno-analysis of irradiated cell extracts, we have identified multiple post-irradiation modifications of DDB2 protein. Interestingly, although the DNA lesions induced by both UVR and cisplatin are corrected by NER, only the UV irradiation, but not the cisplatin treatment, induces any discernable DDB2 modifications. We, for the first time, show that the appearance of UVR-induced DDB2 modifications depend on the binding of DDB2 to the damaged chromatin and the participation of functionally active 26S proteasome. The in vitro and in vivo analysis revealed that SUMO-1 conjugations comprise a significant portion of these UVR-induced DDB2 modifications. Mapping of SUMO-modified sites demonstrated that UVR-induced SUMOylation occurs on Lys-309 residue of DDB2 protein. Mutation of Lys-309 to Arg-309 diminished the DDB2 SUMOylation observable both in vitro and in vivo. Moreover, K309R mutated DDB2 lost its function of recruiting XPC to the DNA damage sites, as well as the ability to repair cyclobutane pyrimidine dimers following cellular UV irradiation. Taken together, our results indicate that DDB2 is modified by SUMOylation upon UV irradiation, and this post-translational modification plays an important role in the initial recognition and processing of UVR-induced DNA damage occurring within the context of chromatin.


Assuntos
Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Sumoilação/efeitos da radiação , Cromatina/metabolismo , Cromatina/efeitos da radiação , Cisplatino/farmacologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Lisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Sumoilação/efeitos dos fármacos , Raios Ultravioleta
14.
J Biol Chem ; 291(20): 10847-57, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26994140

RESUMO

The response to UV irradiation is important for a cell to maintain its genetic integrity when challenged by environmental genotoxins. An immediate early response to UV irradiation is the rapid induction of activating transcription factor 3 (ATF3) expression. Although emerging evidence has linked ATF3 to stress pathways regulated by the tumor suppressor p53 and the histone acetyltransferase Tip60, the role of ATF3 in the UV response remains largely unclear. Here, we report that ATF3 mediated dichotomous UV responses. Although UV irradiation enhanced the binding of ATF3 to Tip60, knockdown of ATF3 expression decreased Tip60 stability, thereby impairing Tip60 induction by UV irradiation. In line with the role of Tip60 in mediating UV-induced apoptosis, ATF3 promoted the death of p53-defective cells in response to UV irradiation. However, ATF3 could also activate p53 and promote p53-mediated DNA repair, mainly through altering histone modifications that could facilitate recruitment of DNA repair proteins (such as DDB2) to damaged DNA sites. As a result, ATF3 rather protected the p53 wild-type cells from UV-induced apoptosis. Our results thus indicate that ATF3 regulates cell fates upon UV irradiation in a p53-dependent manner.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Apoptose/efeitos da radiação , Reparo do DNA/efeitos da radiação , Histona Acetiltransferases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta/efeitos adversos , Fator 3 Ativador da Transcrição/genética , Apoptose/genética , Linhagem Celular Tumoral , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estabilidade Enzimática/genética , Estabilidade Enzimática/efeitos da radiação , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/genética , Humanos , Lisina Acetiltransferase 5 , Proteína Supressora de Tumor p53/genética
15.
Carcinogenesis ; 37(2): 129-38, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26717995

RESUMO

Discretely orchestrated chromatin condensation is important for chromosome protection from DNA damage. However, it is still unclear how different chromatin states affect the formation and repair of nucleotide excision repair (NER) substrates, e.g. ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPD) and the pyrimidine (6-4) pyrimidone photoproducts (6-4PP), as well as cisplatin-induced intrastrand crosslinks (Pt-GG). Here, by using immunofluorescence and chromatin immunoprecipitation assays, we have demonstrated that CPD, which cause minor distortion of DNA double helix, can be detected in both euchromatic and heterochromatic regions, while 6-4PP and Pt-GG, which cause major distortion of DNA helix, can exclusively be detected in euchromatin, indicating that the condensed chromatin environment specifically interferes with the formation of these DNA lesions. Mechanistic investigation revealed that the class III histone deacetylase SIRT1 is responsible for restricting the formation of 6-4PP and Pt-GG in cells, probably by facilitating the maintenance of highly condensed heterochromatin. In addition, we also showed that the repair of CPD in heterochromatin is slower than that in euchromatin, and DNA damage binding protein 2 (DDB2) can promote the removal of CPD from heterochromatic region. In summary, our data provide evidence for differential formation and repair of DNA lesions that are substrates of NER. Both the sensitivity of DNA to damage and the kinetics of repair can be affected by the underlying level of chromatin compaction.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Eucromatina/química , Heterocromatina/química , Células Cultivadas , Imunoprecipitação da Cromatina , Imunofluorescência , Humanos , Immunoblotting , Dímeros de Pirimidina/metabolismo , Interferência de RNA
16.
Tumour Biol ; 37(4): 5645-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26581907

RESUMO

The level of microRNA-93 (miR-93) in tumors has been recently reported to be negatively correlated with survival of lung cancer patients. Considering that the most devastating aspect of lung cancer is metastasis, which can be promoted by transforming growth factor-ß (TGF-ß)-induced epithelial-to-mesenchymal transition (EMT), we sought to determine whether miR-93 is involved in this process. Here, we report that a previously unidentified target of miR-93, neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4L), is able to mediate TGF-ß-mediated EMT in lung cancer cells. miR-93 binds directly to the 3'-UTR of the NEDD4L messenger RNA (mRNA), leading to a downregulation of NEDD4L expression at the protein level. We next demonstrated that the downregulation of NEDD4L enhanced, while overexpression of NEDD4L reduced TGF-ß signaling, reflected by increased phosphorylation of SMAD2 in the lung cancer cell line after TGF-ß treatment. Furthermore, overexpression of miR-93 in lung cancer cells promoted TGF-ß-induced EMT through downregulation of NEDD4L. The analysis of publicly available gene expression array datasets indicates that low NEDD4L expression correlates with poor outcomes among patients with lung cancer, further supporting the oncogenic role of miR-93 in lung tumorigenesis and metastasis.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Fator de Crescimento Transformador beta/genética , Ubiquitina-Proteína Ligases/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/biossíntese , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Masculino , MicroRNAs/biossíntese , Ubiquitina-Proteína Ligases Nedd4 , Metástase Neoplásica , Estadiamento de Neoplasias , Proteína Smad2/biossíntese , Ubiquitina-Proteína Ligases/biossíntese
17.
Nucleic Acids Res ; 43(16): 7838-49, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26130719

RESUMO

The expression of DNA damage-binding protein 2 (DDB2) has been linked to the prognosis of ovarian cancer and its underlying transcription regulatory function was proposed to contribute to the favorable treatment outcome. By applying gene microarray analysis, we discovered neural precursor cell expressed, developmentally downregulated 4-Like (NEDD4L) as a previously unidentified downstream gene regulated by DDB2. Mechanistic investigation demonstrated that DDB2 can bind to the promoter region of NEDD4L and recruit enhancer of zeste homolog 2 histone methyltransferase to repress NEDD4L transcription by enhancing histone H3 lysine 27 trimethylation (H3K27me3) at the NEDD4L promoter. Given that NEDD4L plays an important role in constraining transforming growth factor ß signaling by targeting activated Smad2/Smad3 for degradation, we investigated the role of DDB2 in the regulation of TGF-ß signaling in ovarian cancer cells. Our data indicate that DDB2 enhances TGF-ß signal transduction and increases the responsiveness of ovarian cancer cells to TGF-ß-induced growth inhibition. The study has uncovered an unappreciated regulatory mode that hinges on the interaction between DDB2 and NEDD4L in human ovarian cancer cells. The novel mechanism proposes the DDB2-mediated fine-tuning of TGF-ß signaling and its downstream effects that impinge upon tumor growth in ovarian cancers.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Fator de Crescimento Transformador beta/farmacologia , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Histonas/metabolismo , Humanos , Ubiquitina-Proteína Ligases Nedd4 , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais
18.
Proc Natl Acad Sci U S A ; 112(14): 4411-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831546

RESUMO

Cancer stem cells (CSCs) with enhanced tumorigenicity and chemoresistance are believed to be responsible for treatment failure and tumor relapse in ovarian cancer patients. However, it is still unclear how CSCs survive DNA-damaging agent treatment. Here, we report an elevated expression of DNA polymerase η (Pol η) in ovarian CSCs isolated from both ovarian cancer cell lines and primary tumors, indicating that CSCs may have intrinsically enhanced translesion DNA synthesis (TLS). Down-regulation of Pol η blocked cisplatin-induced CSC enrichment both in vitro and in vivo through the enhancement of cisplatin-induced apoptosis in CSCs, indicating that Pol η-mediated TLS contributes to the survival of CSCs upon cisplatin treatment. Furthermore, our data demonstrated a depletion of miR-93 in ovarian CSCs. Enforced expression of miR-93 in ovarian CSCs reduced Pol η expression and increased their sensitivity to cisplatin. Taken together, our data suggest that ovarian CSCs have intrinsically enhanced Pol η-mediated TLS, allowing CSCs to survive cisplatin treatment, leading to tumor relapse. Targeting Pol η, probably through enhancement of miR-93 expression, might be exploited as a strategy to increase the efficacy of cisplatin treatment.


Assuntos
Cisplatino/química , DNA Polimerase Dirigida por DNA/metabolismo , Neoplasias Ovarianas/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , DNA/química , Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , Regulação para Baixo , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Metástase Neoplásica , Recidiva Local de Neoplasia , Transplante de Neoplasias , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Recidiva
19.
Oncotarget ; 6(12): 10060-72, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25871391

RESUMO

Xeroderma pigmentosum complementation group C (XPC) protein is an important DNA damage recognition factor in nucleotide excision repair. Deletion of XPC is associated with early stages of human lung carcinogenesis, and reduced XPC mRNA levels predict poor patient outcome for non-small cell lung cancer (NSCLC). However, the mechanisms linking loss of XPC expression and poor prognosis in lung cancer are still unclear. Here, we report evidence that XPC silencing drives proliferation and migration of NSCLC cells by down-regulating E-Cadherin. XPC knockdown enhanced proliferation and migration while decreasing E-Cadherin expression in NSCLC cells with an epithelial phenotype. Restoration of E-Cadherin in these cells suppressed XPC knockdown-induced cell growth both in vitro and in vivo. Mechanistic studies showed that the loss of XPC repressed E-Cadherin expression by activating the ERK pathway and upregulating Snail expression. Our findings indicate that XPC silencing-induced reduction of E-Cadherin expression contributes, at least in part, to the poor outcome of NSCLC patients with low XPC expression.


Assuntos
Caderinas/biossíntese , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Dano ao DNA , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Humanos , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese , Transfecção
20.
J Biol Chem ; 289(39): 27278-27289, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25118285

RESUMO

Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Proteólise/efeitos da radiação , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação/efeitos da radiação , Raios Ultravioleta , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Dano ao DNA , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Mutação , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Ubiquitina Tiolesterase/genética , Peptidase 7 Específica de Ubiquitina , Ubiquitinação/genética , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA