Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 4299-4317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766654

RESUMO

Background: Inhibition of amyloid ß protein fragment (Aß) aggregation is considered to be one of the most effective strategies for the treatment of Alzheimer's disease. (-)-Epigallocatechin-3-gallate (EGCG) has been found to be effective in this regard; however, owing to its low bioavailability, nanodelivery is recommended for practical applications. Compared to chemical reduction methods, biosynthesis avoids possible biotoxicity and cumbersome preparation processes. Materials and Methods: The interaction between EGCG and Aß42 was simulated by molecular docking, and green tea-conjugated gold nanoparticles (GT-Au NPs) and EGCG-Au NPs were synthesized using EGCG-enriched green tea and EGCG solutions, respectively. Surface active molecules of the particles were identified and analyzed using various liquid chromatography-tandem triple quadrupole mass spectrometry methods. ThT fluorescence assay, circular dichroism, and TEM were used to investigate the effect of synthesized particles on the inhibition of Aß42 aggregation. Results: EGCG as well as apigenin, quercetin, baicalin, and glutathione were identified as capping ligands stabilized on the surface of GT-Au NPs. They more or less inhibited Aß42 aggregation or promoted fibril disaggregation, with EGCG being the most effective, which bound to Aß42 through hydrogen bonding, hydrophobic interactions, etc. resulting in 39.86% and 88.50% inhibition of aggregation and disaggregation effects, respectively. EGCG-Au NPs were not as effective as free EGCG, whereas multiple thiols and polyphenols in green tea accelerated and optimized heavy metal detoxification. The synthesized GT-Au NPs conferred the efficacy of diverse ligands to the particles, with inhibition of aggregation and disaggregation effects of 54.69% and 88.75%, respectively, while increasing the yield, enhancing water solubility, and decreasing cost. Conclusion: Biosynthesis of nanoparticles using green tea is a promising simple and economical drug-carrying approach to confer multiple pharmacophore molecules to Au NPs. This could be used to design new drug candidates to treat Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Nanopartículas Metálicas , Fragmentos de Peptídeos , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Catequina/química , Catequina/farmacologia , Catequina/análogos & derivados , Ouro/química , Ligantes , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/antagonistas & inibidores , Agregados Proteicos/efeitos dos fármacos , Camellia sinensis/química
2.
Biomaterials ; 299: 122147, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37182418

RESUMO

Oral protein vaccines are mainly used to prevent the infection of intestinal pathogens in clinic due to their high safety and strong compliance. However, it is necessary to design the efficient delivery systems to overcome the harsh gastrointestinal environment in the application process. Here we established a programmable oral bacterial hydrogel system for spatiotemporally controllable production and release of nanovaccines. The system was divided into three parts: (1) Engineered bacteria were encapsulated in chitosan-sodium alginate microcapsules, which offered protection against the extreme acid conditions in the stomach. (2) Microcapsules were dissolved, and then engineered bacteria were released and colonized in the intestine. (3) The release of nanovaccines was controlled periodically by a synchronous lysis genetic circuit for tumor immunotherapy. Compared to control groups, tumor volume of subcutaneous tumor-bearing mice treated with bacterial microgels releasing optimized nanovaccine was almost inhibited by 75% and T cell response was activated at least 2-fold. We believe that this programmable bacterial hydrogel will offer a promising way for the application of oral nanovaccines.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Camundongos , Animais , Cápsulas , Hidrogéis , Bactérias , Imunoterapia , Neoplasias/terapia
3.
Biomaterials ; 287: 121619, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35700622

RESUMO

Subcutaneous administration of sustained-release formulations is a common strategy for protein drugs, which avoids first pass effect and has high bioavailability. However, conventional sustained-release strategies can only load a limited amount of drug, leading to insufficient durability. Herein, we developed microcapsules based on engineered bacteria for sustained release of protein drugs. Engineered bacteria were carried in microcapsules for subcutaneous administration, with a production-lysis circuit for sustained protein production and release. Administrated in diabetic rats, engineered bacteria microcapsules was observed to smoothly release Exendin-4 for 2 weeks and reduce blood glucose. In another example, by releasing subunit vaccines with bacterial microcomponents as vehicles, engineered bacterial microcapsules activated specific immunity in mice and achieved tumor prevention. The engineered bacteria microcapsules have potential to durably release protein drugs and show versatility on the size of drugs. It might be a promising design strategy for long-acting in situ drug factory.


Assuntos
Diabetes Mellitus Experimental , Hidrogéis , Ratos , Camundongos , Animais , Preparações de Ação Retardada/uso terapêutico , Hidrogéis/uso terapêutico , Cápsulas , Diabetes Mellitus Experimental/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA