Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Endocrinology ; 162(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453520

RESUMO

The human testis can be infected by a large number of RNA and DNA viruses. While various RNA virus infections may induce orchitis and impair testicular functions, DNA virus infection rarely affects the testis. Mechanisms underlying the differential effects of RNA and DNA viral infections on the testis remain unclear. In the current study, we therefore examined the effects of viral RNA and DNA sensor signaling pathways on mouse Sertoli cells (SC) and Leydig cells (LC). The local injection of viral RNA analogue polyinosinic-polycytidylic acid [poly(I:C)] into the testis markedly disrupted spermatogenesis, whereas the injection of the herpes simplex virus (HSV) DNA analogue HSV60 did not affect spermatogenesis. Poly(I:C) dramatically induced the expression of the proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 in SC and LC through Toll-like receptor 3 and interferon ß promoter stimulator 1 signaling pathways, impairing the integrity of the blood-testis barrier and testosterone synthesis. Poly(I:C)-induced TNF-α production thus plays a critical role in the impairment of cell functions. In contrast, HSV60 predominantly induced the expression of type 1 interferons and antiviral proteins via the DNA sensor signaling pathway, which did not affect testicular cell functions. Accordingly, the Zika virus induced high levels of TNF-α in SC and LC and impaired their respective cellular functions, whereas Herpes simplex virus type 2 principally induced antiviral responses and did not impair such functions. These results provide insights into the mechanisms by which RNA viral infections impair testicular functions.


Assuntos
DNA Viral/metabolismo , Células Intersticiais do Testículo/metabolismo , RNA Viral/metabolismo , Receptores Virais/metabolismo , Células de Sertoli/metabolismo , Animais , Barreira Hematotesticular/efeitos dos fármacos , Barreira Hematotesticular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Chlorocebus aethiops , DNA Viral/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácidos Nucleicos/metabolismo , Poli I-C/metabolismo , Poli I-C/farmacologia , RNA Viral/farmacologia , Células de Sertoli/efeitos dos fármacos , Transdução de Sinais/imunologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Células Vero
2.
Biol Reprod ; 105(1): 113-127, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33899078

RESUMO

Three major pathogenic states of the prostate, including benign prostatic hyperplasia, prostate cancer, and prostatitis, are related to the local inflammation. However, the mechanisms underlying the initiation of prostate inflammation remain largely unknown. Given that the innate immune responses of the tissue-specific cells to microbial infection or autoantigens contribute to local inflammation, this study focused on pattern recognition receptor (PRR)-initiated innate immune responses in mouse prostatic epithelial cells (PECs). Primary mouse PECs abundantly expressed Toll-like receptor 3 (TLR3), TLR4, TLR5, melanoma differentiation-associated protein 5 (MDA5), and IFN-inducible protein 16 (p204 in mouse). These PRRs can be activated by their respective ligands: lipopolysaccharide (LPS) and flagellin of Gram-negative bacteria for TLR4 and TLR5, polyinosinic-polycytidylic acid (poly(I:C)) for TLR3 and MDA5, and herpes simplex virus DNA analog (HSV60) for p204. LPS and flagellin predominantly induced the expression of inflammatory cytokines, including tumor necrosis factor alpha (TNFA), interleukin 6 (IL6), chemokines monocyte chemoattractant protein-1 (MCP1), and C-X-C motif chemokine 10 (CXCL10). Poly(I:C) and HSV60 predominantly induced the expression of type 1 interferons (IFNA and IFNB) and antiviral proteins: Mx GTPase 1, 2',5'-oligoadenylate synthetase 1, and IFN-stimulated gene 15. The replication of mumps virus in PECs was inhibited by type 1 IFN signaling. These findings provide insights into the mechanisms underlying innate immune response in the prostate.


Assuntos
Imunidade Inata/genética , Próstata/imunologia , Receptores de Reconhecimento de Padrão/genética , Animais , Células Epiteliais/imunologia , Inflamação/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Reconhecimento de Padrão/imunologia
3.
Front Immunol ; 12: 580454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679733

RESUMO

Numerous types of viruses have been found in human semen, which raises concerns about the sexual transmission of these viruses. The overall effect of semen on viral infection and transmission have yet to be fully investigated. In the present study, we aimed at the effect of seminal plasma (SP) on viral infection by focusing on the mumps viral (MuV) infection of HeLa cells. MuV efficiently infected HeLa cells in vitro. MuV infection was strongly inhibited by the pre-treatment of viruses with SP. SP inhibited MuV infection through the impairment of the virus's attachment to cells. The antiviral activity of SP was resistant to the treatment of SP with boiling water, Proteinase K, RNase A, and DNase I, suggesting that the antiviral factor would not be proteins and nucleic acids. PNGase or PLA2 treatments did not abrogate the antiviral effect of SP against MuV. Further, we showed that the prostatic fluid (PF) showed similar inhibition as SP, whereas the epididymal fluid and seminal vesicle extract did not inhibit MuV infection. Both SP and PF also inhibited MuV infection of other cell types, including another human cervical carcinoma cell line C33a, mouse primary epididymal epithelial cells, and Sertoli cell line 15P1. Moreover, this inhibitory effect was not specific to MuV, as the herpes simplex virus 1, dengue virus 2, and adenovirus 5 infections were also inhibited by SP and PF. Our findings suggest that SP contains a prostate-derived pan-antiviral factor that may limit the sexual transmission of various viruses.


Assuntos
Antivirais/imunologia , Células Epiteliais/imunologia , Vírus da Caxumba/imunologia , Sêmen/imunologia , Vírus/imunologia , Animais , Antivirais/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Vírus da Caxumba/fisiologia , Sêmen/metabolismo , Sêmen/virologia , Células Vero
4.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32611752

RESUMO

Japanese encephalitis virus (JEV) is a flavivirus that causes Japanese encephalitis (JE), which has an unclear pathogenesis. Despite vaccination, thousands of deaths attributed to JE are reported annually. In this study, we report that mice deficient for Axl, a receptor tyrosine kinase that plays multiple roles in flaviviral infection, displayed greater mortality upon JEV infection. The effect of Axl deficiency on JEV infection was mediated by markedly elevated serum interleukin-1α (IL-1α) levels, which devastated the blood-brain-barrier and promoted viral neuroinvasion within 24 h postinfection. Using an in situ infection model, we showed that dead macrophages were the primary source of observed increased serum IL-1α levels. Axl deficiency enhanced cell death and caused pyroptosis in 80% of JEV-infected macrophages by disrupting phosphatidylinositol 3-kinase (PI3K)-Akt signaling. Intriguingly, the primary effector released by pyroptotic macrophages in our model was IL-1α rather than IL-1ß. Finally, we assessed the effect of an IL-1α antagonist and demonstrated that it effectively prevented the incidence of JE. Our results indicate that Axl plays a protective role in JEV infection, identify IL-1α released by pyroptotic macrophages as a crucial factor promoting JEV neuroinvasion, and suggest that an IL-1α antagonist may be a candidate for JE therapy.IMPORTANCE Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes Japanese encephalitis (JE), the most commonly diagnosed viral encephalitis worldwide. The fatality rate of JE is 20%, and nearly half of the surviving patients develop neuropsychiatric sequelae. Axl is a receptor tyrosine kinase that plays multiple roles in flaviviral infections. Currently, the involvement of Axl in JEV infection remains enigmatic. In this study, we demonstrate that Axl impedes the pathogenesis of severe JE in mice by maintaining blood-brain-barrier (BBB) integrity and restricting viral neuroinvasion. Furthermore, serum IL-1α is a key mediator of this process and is primarily released by JEV-infected pyroptotic macrophages to elicit BBB breakdown, while an IL-1α antagonist can effectively reduce the incidence of severe JE. Our work uncovers the protective role of Axl in antagonizing severe JE and shows that the use of an IL-1α antagonist may be a promising tactic to prevent severe JE.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/virologia , Interleucina-1alfa/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/virologia , Modelos Animais de Doenças , Encefalite Viral/virologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Piroptose , Receptor Tirosina Quinase Axl
5.
Asian J Androl ; 22(5): 472-480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31696835

RESUMO

Epididymitis can be caused by infectious and noninfectious etiological factors. While microbial infections are responsible for infectious epididymitis, the etiological factors contributing to noninfectious epididymitis remain to be defined. The present study demonstrated that damaged male germ cells (DMGCs) induce epididymitis in mice. Intraperitoneal injection of the alkylating agent busulfan damaged murine male germ cells. Epididymitis was observed in mice 4 weeks after the injection of busulfan and was characterized by massive macrophage infiltration. Epididymitis was coincident with an accumulation of DMGCs in the epididymis. In contrast, busulfan injection into mice lacking male germ cells did not induce epididymitis. DMGCs induced innate immune responses in epididymal epithelial cells (EECs), thereby upregulating the pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß), as well as the chemokines such as monocyte chemotactic protein-1 (MCP-1), monocyte chemotactic protein-5 (MCP-5), and chemokine ligand-10 (CXCL10). These results suggest that male germ cell damage may induce noninfectious epididymitis through the induction of innate immune responses in EECs. These findings provide novel insights into the mechanisms underlying noninfectious epididymitis, which might aid in the diagnosis and treatment of the disease.


Assuntos
Citocinas/metabolismo , Epididimite/imunologia , Epididimite/patologia , Células Germinativas/imunologia , Células Germinativas/metabolismo , Animais , Bussulfano , Movimento Celular , Quimiocina CCL2/metabolismo , Quimiocina CXCL10/metabolismo , Células Germinativas/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quimioatraentes de Monócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
FASEB J ; 33(11): 12528-12540, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31450968

RESUMO

Mumps virus (MuV) has high tropism to the testis and may lead to male infertility. Sertoli cells are the major targets of MuV infection. However, the mechanisms by which MuV infection impairs male fertility and Sertoli cell function remain unclear. The present study elucidated the effect of MuV infection on the blood-testis barrier (BTB). The transepithelial electrical resistance of MuV-infected mouse Sertoli cells was monitored, and the expression of major proteins of the BTB was examined. We demonstrated that MuV infection disrupted the BTB by reducing the levels of occludin and zonula occludens 1. Sertoli cells derived from Tlr2-/- and Tnfa-/- mice were analyzed for mediating MuV-induced impairment. TLR2-mediated TNF-α production by Sertoli cells in response to MuV infection impaired BTB integrity. MuV-impaired BTB was not observed in Tlr2-/- and Tnfa-/- Sertoli cells. Moreover, an inhibitor of TNF-α, pomalidomide, prevents the disruption of BTB in response to MuV infection. FITC-labeled biotin tracing assay confirmed that BTB permeability and spermatogenesis were transiently impaired by MuV infection in vivo. These findings suggest that the disruption of the BTB could be one of the mechanisms underlying MuV-impaired male fertility, in which TNF-α could play a critical role.-Wu, H., Jiang, X., Gao, Y., Liu, W., Wang, F., Gong, M., Chen, R., Yu, X., Zhang, W., Gao, B., Song, C., Han, D. Mumps virus infection disrupts blood-testis barrier through the induction of TNF-α in Sertoli cells.


Assuntos
Barreira Hematotesticular/metabolismo , Vírus da Caxumba/metabolismo , Caxumba/metabolismo , Células de Sertoli/metabolismo , Espermatogênese , Fator de Necrose Tumoral alfa/metabolismo , Animais , Barreira Hematotesticular/patologia , Barreira Hematotesticular/virologia , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Infertilidade Masculina/virologia , Masculino , Camundongos , Camundongos Knockout , Caxumba/genética , Caxumba/patologia , Vírus da Caxumba/genética , Células de Sertoli/patologia , Células de Sertoli/virologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
7.
Biol Reprod ; 101(4): 733-747, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31350848

RESUMO

The seminal vesicles can be infected by microorganisms, thereby resulting in vesiculitis and impairment in male fertility. Innate immune responses in seminal vesicles cells to microbial infections, which facilitate vesiculitis, have yet to be investigated. The present study aims to elucidate pattern recognition receptor-mediated innate immune responses in seminal vesicles epithelial cells. Various pattern recognition receptors, including Toll-like receptor 3, Toll-like receptor 4, cytosolic ribonucleic acid, and deoxyribonucleic acid sensors, are abundantly expressed in seminal vesicles epithelial cells. These pattern recognition receptors can recognize their respective ligands, thus activating nuclear factor kappa B and interferon regulatory factor 3. The pattern recognition receptor signaling induces expression of pro-inflammatory cytokines, such as tumor necrosis factor alpha (Tnfa) and interleukin 6 (Il6), chemokines monocyte chemoattractant protein-1 (Mcp1) and C-X-C motif chemokine 10 (Cxcl10), and type 1 interferons Ifna and Ifnb. Moreover, pattern recognition receptor-mediated innate immune responses up-regulated the expression of microsomal prostaglandin E synthase and cyclooxygenase 2, but they down-regulated semenogelin-1 expression. These results provide novel insights into the mechanism underlying vesiculitis and its impact on the functions of the seminal vesicles.


Assuntos
Células Epiteliais/imunologia , Imunidade Inata/genética , Receptores de Reconhecimento de Padrão/fisiologia , Glândulas Seminais/imunologia , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poli I-C , Receptores de Reconhecimento de Padrão/genética , Glândulas Seminais/citologia , Glândulas Seminais/metabolismo , Transdução de Sinais
8.
Biol Reprod ; 100(3): 849-861, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30398566

RESUMO

Systemic inflammation may impair male fertility, and its underlying mechanisms remain poorly understood. The present study investigates the effect of lipopolysaccharide (LPS)-induced systemic inflammation on the testis and epididymis in mice. Intraperitoneal injection of LPS significantly impaired testicular functions, including testosterone production, spermatogenesis, and blood-testis barrier permeability. The epididymitis characterized by leukocyte infiltration and fibrosis was observed in the cauda epididymis after LPS injection. LPS-induced testicular dysfunction and epididymitis were abolished in tumor necrosis factor alpha (Tnfa) knockout mice. Pomalidomide, a TNFA inhibitor, blocked the detrimental effects of LPS on the testis and epididymis. The results indicate that LPS-induced systemic inflammation impairs male fertility through TNFA production, suggesting that the intervention on TNFA production would be considered for the prevention and treatment of inflammatory impairment of male fertility.


Assuntos
Epididimite/induzido quimicamente , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Animais , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Epididimite/prevenção & controle , Fatores Imunológicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Talidomida/análogos & derivados , Talidomida/farmacologia , Fator de Necrose Tumoral alfa/genética
9.
Cell Death Dis ; 8(10): e3146, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29072682

RESUMO

Mumps virus (MuV) infection usually results in germ cell degeneration in the testis, which is an etiological factor for male infertility. However, the mechanisms by which MuV infection damages male germ cells remain unclear. The present study showed that C-X-C motif chemokine ligand 10 (CXCL10) is produced by mouse Sertoli cells in response to MuV infection, which induces germ cell apoptosis through the activation of caspase-3. CXC chemokine receptor 3 (CXCR3), a functional receptor of CXCL10, is constitutively expressed in male germ cells. Neutralizing antibodies against CXCR3 and an inhibitor of caspase-3 activation significantly inhibited CXCL10-induced male germ cell apoptosis. Furthermore, the tumor necrosis factor-α (TNF-α) upregulated CXCL10 production in Sertoli cells after MuV infection. The knockout of either CXCL10 or TNF-α reduced germ cell apoptosis in the co-cultures of germ cells and Sertoli cells in response to MuV infection. Local injection of MuV into the testes of mice confirmed the involvement of CXCL10 in germ cell apoptosis in vivo. These results provide novel insights into MuV-induced germ cell apoptosis in the testis.


Assuntos
Quimiocina CXCL10/biossíntese , Células Germinativas/metabolismo , Vírus da Caxumba/fisiologia , Caxumba/metabolismo , Células de Sertoli/metabolismo , Animais , Apoptose/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Caxumba/patologia , Caxumba/virologia , Células de Sertoli/virologia
10.
Cell Death Dis ; 8(9): e3038, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28880272

RESUMO

During spermatogenesis, immature spermatocytes traverse the blood-testis barrier (BTB) and enter the apical apartment of seminiferous epithelium for further development. This course involves extensive junction disassembly and reassembly at the BTB. P-glycoprotein is known to be coded by two genes in rodents, namely Abcb1a and Abcb1b. Our previous studies showed that simultaneously silencing Abcb1a and Abcb1b genes in Sertoli cells impeded BTB integrity. However, the individual role of Abcb1a and Abcb1b in regulating BTB dynamics remains uninvestigated. Here, single knockdown of Abcb1a by RNAi impeded the in vitro Sertoli cell permeability barrier via redistributing TJ proteins, accelerating endocytosis, and affecting endocytic vesicle-mediated protein transportation that undermined Sertoli cell barrier. F5-peptide model was used to induce cell junction disruption and subsequent restructuring in primary Sertoli cells. F5-peptide perturbed this barrier, but its removal allowed barrier 'resealing'. Abcb1b knockdown was found to inhibit barrier resealing following F5-peptide removal by suppressing the restore of the expression and distribution of junction proteins at BTB, and reducing the migration of internalized junction proteins back to Sertoli cell interface. In summary, Abcb1a is critical in maintaining BTB integrity, while Abcb1b is crucial for junction reassembly at the BTB.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Barreira Hematotesticular/metabolismo , Células de Sertoli/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Junções Íntimas/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematotesticular/efeitos dos fármacos , Caderinas/genética , Caderinas/metabolismo , Movimento Celular/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ocludina/genética , Ocludina/metabolismo , Peptídeos/farmacologia , Cultura Primária de Células , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Epitélio Seminífero/citologia , Epitélio Seminífero/efeitos dos fármacos , Epitélio Seminífero/metabolismo , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Espermatócitos/citologia , Espermatócitos/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
11.
J Gen Virol ; 98(8): 2061-2068, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28786784

RESUMO

Recently, Zika virus (ZIKV) outbreak has been associated with a sharp increase in cases of Guillain-Barré syndrome and severe fetal abnormalities. However, the mechanism underlying the interaction of ZIKV with host cells is not yet clear. Axl, a receptor tyrosine kinase, is postulated as a receptor for ZIKV entry; however, its in vivo role during ZIKV infection and its impact on the outcome of the disease have not been fully characterized and evaluated. Moreover, there are contradictory results on its involvement in ZIKV infection. Here we utilized Axl-deficient mice (Axl-/-) and their littermates (Axl+/-) to study the in vivo role of Axl in ZIKV infection. Our results showed that both Axl+/- and Axl-/- suckling mice supported the replication of ZIKV and presented clinical manifestations. No significant difference has been found between Axl-deficient mice and their littermates in terms of the survival rate, clinical manifestations, viral load, ZIKV distribution and histopathological changes in major organs. These results therefore indicate that Axl is not an indispensable factor for ZIKV infection in mice.


Assuntos
Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Infecção por Zika virus/enzimologia , Zika virus/fisiologia , Animais , Feminino , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Internalização do Vírus , Replicação Viral , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/virologia , Receptor Tirosina Quinase Axl
12.
Cell ; 167(6): 1511-1524.e10, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27884405

RESUMO

Zika virus (ZIKV) persists in the semen of male patients, a first for flavivirus infection. Here, we demonstrate that ZIKV can induce inflammation in the testis and epididymidis, but not in the prostate or seminal vesicle, and can lead to damaged testes after 60 days post-infection in mice. ZIKV induces innate immune responses in Leydig, Sertoli, and epididymal epithelial cells, resulting in the production of pro-inflammatory cytokines/chemokines. However, ZIKV does not induce a rapid and abundant cytokine production in peritubular cell and spermatogonia, suggesting that these cells are vulnerable for ZIKV infection and could be the potential repositories for ZIKV. Our study demonstrates a correlation between ZIKV and testis infection/damage and suggests that ZIKV infection, under certain circumstances, can eventually lead to male infertility.


Assuntos
Infertilidade Masculina/virologia , Testículo/virologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Citocinas/metabolismo , Epididimo/patologia , Epididimo/virologia , Humanos , Infertilidade Masculina/patologia , Masculino , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor de Interferon alfa e beta/genética , Testículo/patologia , Internalização do Vírus , Zika virus/isolamento & purificação , Infecção por Zika virus/patologia , Infecção por Zika virus/transmissão , Receptor Tirosina Quinase Axl
13.
Mol Cell Endocrinol ; 436: 183-94, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27477784

RESUMO

Mumps virus (MuV) infection may lead to oophoritis and perturb ovarian function. However, the mechanisms underlying the activation of innate immune responses to MuV infection in the ovary have not been investigated. This study showed that Toll-like receptor 2 (TLR2) and retinoic acid-inducible gene I (RIG-I) cooperatively initiate innate immune responses to MuV infection in mouse ovarian granulosa cells. Ovarian granulosa cells infected with MuV significantly produced pro-inflammatory cytokines and chemokines, including interleukin-1ß (IL-1ß), tumor necrosis factor α (TNF-α), monocyte chemotactic protein 1 (MCP-1), and type 1 interferons (IFN-α and IFN-ß). Knockdown of RIG-I significantly decreased MuV-induced cytokine expression. TLR2 deficiency reduced the expression of IL-1ß, TNF-α, and MCP-1 but did not affect the expression of IFN-α and IFN-ß in granulosa cells after infection with MuV. Intraperitoneal injection of MuV induced the ovarian innate immune responses in vivo, which suppressed estradiol synthesis and induced granulosa cell apoptosis. The results provide novel insights into the mechanisms underlying MuV-induced innate immune responses in the mouse ovary.


Assuntos
Proteína DEAD-box 58/metabolismo , Células da Granulosa/imunologia , Células da Granulosa/virologia , Imunidade Inata , Vírus da Caxumba/fisiologia , Receptor 2 Toll-Like/metabolismo , Animais , Apoptose , Citocinas/metabolismo , Feminino , Humanos , Fator Regulador 3 de Interferon/metabolismo , Camundongos Endogâmicos C57BL , Caxumba/imunologia , Caxumba/virologia , NF-kappa B/metabolismo
14.
Biol Reprod ; 94(3): 58, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26819479

RESUMO

Uropathogenic Escherichia coli (UPEC) may cause epididymitis and impair male fertility. The mechanisms underlying the innate immune responses to UPEC infection in the epididymis are not fully understood. This study showed that UPEC induced innate immune responses in mouse epididymal epithelial cells (EECs) through the activation of Toll-like receptor 4 (TLR4) and TLR5. Infection with UPEC significantly induced the expression of proinflammatory cytokines, including tumor necrosis factor alpha, interleukin 6, and monocyte chemoattractant protein 1, in EECs through the activation of nuclear factor kappa B. Moreover, UPEC induced the production of type 1 interferons by EECs through the activation of interferon regulatory factor 3. The UPEC-induced innate immune responses were significantly reduced in the EECs of Tlr4 or Tlr5 knockout mice. The innate immune responses were further reduced in Tlr4 and Tlr5 double-knockout EECs. Furthermore, we demonstrated that TLR4 and TLR5 cooperatively initiated the epididymal innate immune responses to UPEC infection in vivo. The results provide novel insights into the mechanisms underlying the epididymal innate immune responses to UPEC infection.


Assuntos
Epididimo/metabolismo , Imunidade Inata/fisiologia , Receptor 4 Toll-Like/metabolismo , Receptor 5 Toll-Like/metabolismo , Escherichia coli Uropatogênica/imunologia , Animais , Células Cultivadas , Epididimo/microbiologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 5 Toll-Like/genética
15.
Biol Reprod ; 93(1): 11, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26040668

RESUMO

Viral infections may perturb ovarian functions and female fertility. Mechanisms underlying viral perturbation of ovarian functions are incompletely understood. This study found that intraperitoneal injection of polyinosinic-polycytidylic acid [poly (I:C)] in female mice inhibits estradiol synthesis and induces ovarian granulosa cell apoptosis. Poly (I:C) is a synthetic viral double-stranded RNA analog, which induces innate antiviral responses mimicking a viral infection through activation of pattern recognition receptors, including toll-like receptor 3 (TLR3), retinoic acid-inducible gene I, and melanoma differentiation-associated gene 5. Injection of poly (I:C) significantly induced granulosa cell apoptosis in antral follicles and reduced antral follicle numbers. These effects were significantly diminished in Tlr3 knockout or tumor necrosis factor-alpha (Tnfa) knockout mice. We demonstrated that poly (I:C) induced TNFA production at a relatively high level in wild-type mice compared with that in Tlr3 knockout mice. Notably, TNFA neutralizing antibody significantly reduced poly (I:C)-induced ovarian dysfunction. In vitro assays confirmed that TNFA inhibits estradiol synthesis and induces granulosa cell apoptosis. Results provide novel insights into the mechanisms by which a mimicked viral infection perturbs ovarian functions in mice.


Assuntos
Ovário/efeitos dos fármacos , Poli I-C/farmacologia , Receptor 3 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose/efeitos dos fármacos , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Imunidade Inata/efeitos dos fármacos , Camundongos , Camundongos Knockout , Ovário/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/genética
16.
J Immunol ; 194(10): 4825-35, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25840915

RESUMO

Viral infections of the epididymis may impair male fertility and spread sexually transmitted pathogens. The innate antiviral immune responses in the epididymis have yet to be intensively investigated. This study found that mouse epididymal epithelial cells (EECs) constitutively express several viral sensors, including TLR3, retinoic acid-inducible gene I, and DNA-dependent activator of IFN regulatory factors. Other DNA sensors, including p204 and cGMP-AMP synthase, can be induced by transfection of synthetic HSV genomic DNA (HSV60). TLR3 and retinoic acid-inducible gene I in EECs can be activated by their common agonist, polyinosinic-polycytidylic acid [poly(I:C)]. The signaling pathway of DNA sensors can be initiated by HSV60. Both poly(I:C) and HSV60 induced the expression of type 1 IFNs and various antiviral proteins, including IFN-stimulated gene 15, 2',5'-oligoadenylate synthetase, and myxovirus resistance 1. Poly(I:C), but not HSV60, also dramatically induced the expression of major proinflammatory cytokines, including TNF-α and MCP-1, in EECs. In vivo assay confirmed that the local injection of poly(I:C) or HSV60 induced the innate antiviral responses in EECs. This study provided novel insights into the mechanisms underlying the innate antiviral responses in the mouse epididymis.


Assuntos
Epididimo/imunologia , Células Epiteliais/imunologia , Imunidade Inata/imunologia , Receptores de Reconhecimento de Padrão/biossíntese , Animais , Western Blotting , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Viroses/imunologia
17.
Eur J Immunol ; 45(6): 1696-705, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25820812

RESUMO

Hepatitis B virus (HBV) is known to cause age-dependent infection outcomes wherein most infections during young age result in chronicity. The mechanism underlying the differential outcome remains elusive. By using hydrodynamic injection of the replication-competent pAAV-HBV, we established a mouse model in which HBV persistence was generated in 4-5 w/o C57BL/6 young mice, but not in adult mice over 10 w/o. HBV-tolerant young mice expressed higher interferon (IFN)-α/ß levels in hepatocytes and intrahepatic plasmacytoid DCs (pDCs) than adult mice after pAAV-HBV injection. Excessive IFN-α/ß expression in young mice was associated with induction of the Axl regulatory pathway and expansion of intrahepatic Treg cells. In line with these findings, augmented IFN-ß expression increased Axl expression in the liver and HBV persistence in adult mice, whereas IFN-α/ß signaling blockage decreased Axl expression and HBV persistence in young mice. Accordingly, Axl overexpression decreased HBV clearance of adult mice whereas Axl silencing enhanced HBV clearance of young mice. In vitro, IFN-ß priming of pDCs and Axl-overexpressing macrophages enhanced Treg-cell differentiation. These findings suggest that age-dependent HBV chronicity is attributed to IFN-ß-Axl immune regulation, which is selectively induced in young mice by excessive IFN-α/ß production at early stage of HBV infection.


Assuntos
Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Hepatite B/metabolismo , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Fatores Etários , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Hepatite B/mortalidade , Hepatite B/virologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/metabolismo , Hepatite B Crônica/virologia , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-10/metabolismo , Camundongos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Receptor Tirosina Quinase Axl
18.
Immunol Cell Biol ; 93(3): 311-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25403570

RESUMO

The mammalian testis is an immunoprivileged organ where male germ cell autoantigens are immunologically ignored. Both systemic immune tolerance to autoantigens and local immunosuppressive milieu contribute to the testicular immune privilege. Testicular immunosuppression has been intensively studied, but information on systemic immune tolerance to autoantigens is lacking. In the present study, we aimed to determine the role of Axl and Mer receptor tyrosine kinases in maintaining the systemic tolerance to male germ cell antigens using the experimental autoimmune orchitis (EAO) model. Axl and Mer double-knockout (Axl(-/-)Mer(-/-)) mice developed evident EAO after a single immunization with germ cell homogenates emulsified with complete Freund's adjuvant. EAO was characterized by the accumulation of macrophages and T lymphocytes in the testis. Damage to the seminiferous epithelium was also observed. EAO induction was associated with pro-inflammatory cytokine upregulation in the testes, impaired permeability of the blood-testis barrier and generation of autoantibodies against germ cell antigens in Axl(-/-)Mer(-/-) mice. Immunization also induced mild EAO in Axl or Mer single-gene-knockout mice. By contrast, a single immunization failed to induce EAO in wild-type mice. The results indicate that Axl and Mer receptors cooperatively regulate the systemic immune tolerance to male germ cell antigens.


Assuntos
Doenças Autoimunes/imunologia , Macrófagos/imunologia , Orquite/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Linfócitos T/imunologia , Testículo/imunologia , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Doenças Autoimunes/genética , Barreira Hematotesticular/imunologia , Modelos Animais de Doenças , Humanos , Tolerância Imunológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orquite/genética , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , c-Mer Tirosina Quinase , Receptor Tirosina Quinase Axl
19.
Am J Physiol Endocrinol Metab ; 307(7): E553-62, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25117412

RESUMO

The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. However, it undergoes cyclic restructuring during the epithelial cycle of spermatogenesis in which the "old" BTB located above the preleptotene spermatocytes being transported across the immunological barrier is "disassembled," whereas the "new" BTB found behind these germ cells is rapidly "reassembled," i.e., mediated by endocytic vesicle-mediated protein trafficking events. Thus, the immunological barrier is maintained when preleptotene spermatocytes connected in clones via intercellular bridges are transported across the BTB. Yet the underlying mechanism(s) in particular the involving regulatory molecules that coordinate these events remains unknown. We hypothesized that c-Src and c-Yes might work in contrasting roles in endocytic vesicle-mediated trafficking, serving as molecular switches, to effectively disassemble and reassemble the old and the new BTB, respectively, to facilitate preleptotene spermatocyte transport across the BTB. Following siRNA-mediated specific knockdown of c-Src or c-Yes in Sertoli cells, we utilized biochemical assays to assess the changes in protein endocytosis, recycling, degradation and phagocytosis. c-Yes was found to promote endocytosed integral membrane BTB proteins to the pathway of transcytosis and recycling so that internalized proteins could be effectively used to assemble new BTB from the disassembling old BTB, whereas c-Src promotes endocytosed Sertoli cell BTB proteins to endosome-mediated protein degradation for the degeneration of the old BTB. By using fluorescence beads mimicking apoptotic germ cells, Sertoli cells were found to engulf beads via c-Src-mediated phagocytosis. A hypothetical model that serves as the framework for future investigation is thus proposed.


Assuntos
Barreira Hematotesticular/metabolismo , Proteínas Proto-Oncogênicas c-yes/fisiologia , Proteínas Proto-Oncogênicas pp60(c-src)/fisiologia , Células de Sertoli/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Técnicas de Cultura de Células , Células Cultivadas , Endocitose/fisiologia , Técnicas de Silenciamento de Genes , Genes src/genética , Masculino , Proteínas de Membrana/metabolismo , Fagocitose/fisiologia , Proteínas Proto-Oncogênicas c-yes/genética , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley
20.
J Clin Invest ; 124(6): 2709-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24762434

RESUMO

Male infertility accounts for almost half of infertility cases worldwide. A subset of infertile men exhibit reduced testosterone and enhanced levels of estradiol (E2), though it is unclear how increased E2 promotes deterioration of male fertility. Here, we utilized a transgenic mouse strain that overexpresses human CYP19, which encodes aromatase (AROM+ mice), and mice with knockout of Esr1, encoding estrogen receptor α (ERαKO mice), to analyze interactions between viable Leydig cells (LCs) and testicular macrophages that may lead to male infertility. In AROM+ males, enhanced E2 promoted LC hyperplasia and macrophage activation via ERα signaling. E2 stimulated LCs to produce growth arrest-specific 6 (GAS6), which mediates phagocytosis of apoptotic cells by bridging cells with surface exposed phosphatidylserine (PS) to macrophage receptors, including the tyrosine kinases TYRO3, AXL, and MER. Overproduction of E2 increased apoptosis-independent extrusion of PS on LCs, which in turn promoted engulfment by E2/ERα-activated macrophages that was mediated by AXL-GAS6-PS interaction. We further confirmed E2-dependant engulfment of LCs by real-time 3D imaging. Furthermore, evaluation of molecular markers in the testes of patients with nonobstructive azoospermia (NOA) revealed enhanced expression of CYP19, GAS6, and AXL, which suggests that the AROM+ mouse model reflects human infertility. Together, these results suggest that GAS6 has a potential as a clinical biomarker and therapeutic target for male infertility.


Assuntos
Estradiol/metabolismo , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Adulto , Animais , Aromatase/genética , Aromatase/metabolismo , Azoospermia/genética , Azoospermia/metabolismo , Azoospermia/patologia , Biomarcadores/metabolismo , Modelos Animais de Doenças , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/genética , Humanos , Infertilidade Masculina/etiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Modelos Biológicos , Fagocitose , Fosfolipídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Testículo/metabolismo , Testículo/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA