Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 212: 111231, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32862047

RESUMO

Autophagy dysregulation is implicated in cadmium (Cd)-induced nephrotoxicity. The mammalian target of rapamycin complex 1 (mTORC1) is a negative regulator of autophagy, but its role in Cd-induced autophagy inhibition and possible regulatory mechanisms remains poorly understood. In the present study, Cd exposure activated mTORC1 in primary rat proximal tubular (rPT) cells, and two mTORC1 inhibitors (rapamycin and torin 1) were separately utilized to inhibit Cd-induced mTORC1 activation. Data showed that Cd-inhibited autophagic flux was markedly restored by two mTORC1 inhibitors, respectively, as evidenced by immunoblot analysis of autophagy marker proteins and tandem red fluorescent protein-green fluorescent protein-microtubule associated protein light chain 3 (RFP-GFP-LC3) fluorescence microscopy assay. Importantly, Cd exposure triggered the recruitment of mTORC1 onto lysosome membrane assessed by immunofluorescence co-localization analysis, which was obviously inhibited by rapamycin or torin 1. Moreover, Cd-induced lysosomal alkalization, suppressed vacuolar ATPases (V-ATPases) protein levels and impaired lysosomal degradation capacity were markedly reversed by rapamycin or torin 1. In summary, these findings demonstrate that Cd recruits mTORC1 to lysosome membrane to induce its activation, which results in lysosomal dysfunction and resultant autophagy inhibition in rPT cells.


Assuntos
Autofagia/efeitos dos fármacos , Cádmio/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Túbulos Renais Proximais/citologia , Lisossomos/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA