Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(14): e202318897, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38326236

RESUMO

Mirror-image proteins (D-proteins) are useful in biomedical research for purposes such as mirror-image screening for D-peptide drug discovery, but the chemical synthesis of many D-proteins is often low yielding due to the poor solubility or aggregation of their constituent peptide segments. Here, we report a Lys-C protease-cleavable solubilizing tag and its use to synthesize difficult-to-obtain D-proteins. Our tag is easily installed onto multiple amino acids such as DLys, DSer, DThr, and/or the N-terminal amino acid of hydrophobic D-peptides, is impervious to various reaction conditions, such as peptide synthesis, ligation, desulfurization, and transition metal-mediated deprotection, and yet can be completely removed by Lys-C protease under denaturing conditions to give the desired D-protein. The efficacy and practicality of the new method were exemplified in the synthesis of two challenging D-proteins: D-enantiomers of programmed cell death protein 1 IgV domain and SARS-CoV-2 envelope protein, in high yield. This work demonstrates that the enzymatic cleavage of solubilizing tags under denaturing conditions is feasible, thus paving the way for the production of more D-proteins.


Assuntos
Peptídeos , Proteínas , Proteínas/química , Peptídeos/química , Aminoácidos/química , Técnicas de Química Sintética/métodos , Peptídeo Hidrolases , Endopeptidases
2.
Angew Chem Int Ed Engl ; 63(9): e202313640, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38193587

RESUMO

D-peptide ligands can be screened for therapeutic potency and enzymatic stability using synthetic mirror-image proteins (D-proteins), but efficient acquisition of these D-proteins can be hampered by the need to accomplish their in vitro folding, which often requires the formation of correctly linked disulfide bonds. Here, we report the finding that temporary installation of natural O-linked-ß-N-acetyl-D-glucosamine (O-GlcNAc) groups onto selected D-serine or D-threonine residues of the synthetic disulfide-bonded D-proteins can facilitate their folding in vitro, and that the natural glycosyl groups can be completely removed from the folded D-proteins to afford the desired chirally inverted D-protein targets using naturally occurring O-GlcNAcase. This approach enabled the efficient chemical syntheses of several important but difficult-to-fold D-proteins incorporating disulfide bonds including the mirror-image tumor necrosis factor alpha (D-TNFα) homotrimer and the mirror-image receptor-binding domain of the Omicron spike protein (D-RBD). Our work establishes the use of O-GlcNAc to facilitate D-protein synthesis and folding and proves that D-proteins bearing O-GlcNAc can be good substrates for naturally occurring O-GlcNAcase.


Assuntos
Acetilglucosaminidase , Proteínas , Peptídeos , Polissacarídeos , Glucosamina
3.
Biosensors (Basel) ; 13(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37185569

RESUMO

Highly bio-compatible organic semiconductors are widely used as biosensors, but their long-term stability can be compromised due to photo-degradation and structural instability. To address this issue, scientists have developed organic semiconductor nanoparticles (OSNs) by incorporating organic semiconductors into a stable framework or self-assembled structure. OSNs have shown excellent performance and can be used as high-resolution biosensors in modern medical and biological research. They have been used for a wide range of applications, such as detecting small biological molecules, nucleic acids, and enzyme levels, as well as vascular imaging, tumor localization, and more. In particular, OSNs can simulate fine particulate matters (PM2.5, indicating particulate matter with an aerodynamic diameter less than or equal to 2.5 µm) and can be used to study the biodistribution, clearance pathways, and health effects of such particles. However, there are still some problems that need to be solved, such as toxicity, metabolic mechanism, and fluorescence intensity. In this review, based on the structure and design strategies of OSNs, we introduce various types of OSNs-based biosensors with functional groups used as biosensors and discuss their applications in both in vitro and in vivo tracking. Finally, we also discuss the design strategies and potential future trends of OSNs-based biosensors. This review provides a theoretical scaffold for the design of high-performance OSNs-based biosensors and highlights important trends and future directions for their development and application.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Pontos Quânticos , Distribuição Tecidual , Técnicas Biossensoriais/métodos , Semicondutores
4.
Chem Asian J ; 18(2): e202201132, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36479828

RESUMO

The arylcyclopropane motif as the combination of aryl and cyclopropyl ring systems can be found in an increasing amount of approved and investigational drugs. Herein, we have developed a mild, efficient nickel-catalyzed reductive cross-coupling protocol, featuring a simple Ni(II) precatalyst and a novel picolinamide NN2 pincer ligand. A variety of (hetero)aryl bromides could successfully couple with cyclopropyl bromide to furnish the valued arylcyclopropanes in good to excellent yields. This method is applicable to other alkyl bromides as well. Notably, the reaction is tolerant of a broad range of functionalities including free amines. Furthermore, the synthesis of several significant intermediates of bioactive molecules was achieved in grams, proving the practicability of this method.


Assuntos
Brometos , Níquel , Ligantes , Estrutura Molecular , Catálise
5.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430435

RESUMO

Apart from the well-established role of the gonadotropin-inhibitory hormone (GnIH) in the regulation of the reproductive functions, much less is known about the peripheral role of the GnIH and its receptor in the metabolic processes. On account of pig being an excellent model for studies of food intake and obesity in humans, we investigated the peripheral effects of the GnIH on food intake and energy homeostasis and revealed the underlying mechanism(s) in female piglets in vivo. Compared to the vehicle-treated group, intraperitoneally injected GnIH significantly increased the food intake and altered the meal microstructure both in the fasting and ad libitum female piglet. GnIH-triggered hyperphagia induced female piglet obesity and altered islet hormone secretion in the pancreas, accompanied with dyslipidemia and hyperglycemia. Interestingly, GnIH decreased the glucose transport capacity and glycogen synthesis, whereas it increased the gluconeogenesis in the liver, while it also induced an insulin resistance in white adipose tissue (WAT) via inhibiting the activity of AKT-GSK3-ß signaling. In terms of the lipid metabolism, GnIH reduced the oxidation of fatty acids, whereas the elevated fat synthesis ability in the liver and WAT was developed though the inhibited AMPK phosphorylation. Our findings demonstrate that peripheral GnIH could trigger hyperphagia-induced obesity and an associated glycolipid metabolism disorder in female piglets, suggesting that GnIH may act as a potential therapeutic agent for metabolic syndrome, obesity and diabetes.


Assuntos
Hormônios Hipotalâmicos , Humanos , Animais , Feminino , Suínos , Hormônios Hipotalâmicos/fisiologia , Quinase 3 da Glicogênio Sintase , Gonadotropinas , Hiperfagia , Obesidade/etiologia
6.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897643

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a reproductive inhibitor and an endogenous orexigenic neuropeptide that may be involved in energy homeostasis and reproduction. However, whether GnIH is a molecular signal link of metabolism and the reproductive system, and thus, regulates reproductive activity as a function of the energy state, is still unknown. In the present study, we investigated the involvement of GnIH in glycolipid metabolism and reproduction in vivo, and in the coupling between these two processes in the testis level. Our results showed that chronic intraperitoneal injection of GnIH into male mice not only increased food intake and altered meal microstructure but also significantly elevated body mass due to the increased mass of liver and epididymal white adipose tissue (eWAT), despite the loss of testicular weight. Furthermore, chronic intraperitoneal administration of GnIH to male mice resulted in obesity-related glycolipid metabolic derangements, showing hyperlipidemia, hyperglycemia, glucose intolerance, and insulin resistance through changes in the expression of glucose and lipid metabolism-related genes in the pancreas and eWAT, respectively. Interestingly, the expression of GnIH and GPR147 was markedly increased in the testis of mice under conditions of energy imbalance, such as fasting, acute hypoglycemia, and hyperglycemia. In addition, chronic GnIH injection markedly inhibited glucose and lipid metabolism of mice testis while significantly decreasing testosterone synthesis and sperm quality, inducing hypogonadism. These observations indicated that orexigenic GnIH triggers hyperphagia-induced obesity-related metabolic derangements and hypogonadism in male mice, suggesting that GnIH is an emerging candidate for coupling metabolism and fertility by involvement in obesity and metabolic disorder-induced reproductive dysfunction of the testes.


Assuntos
Hiperglicemia , Hipogonadismo , Hormônios Hipotalâmicos , Animais , Glucose , Glicolipídeos , Gonadotropinas , Hiperfagia/complicações , Hipogonadismo/etiologia , Hormônios Hipotalâmicos/genética , Masculino , Camundongos , Obesidade/complicações , Sêmen/metabolismo
7.
Chemistry ; 26(54): 12349-12354, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32596851

RESUMO

An efficient and operationally simple Ni-catalyzed amination protocol has been developed. This methodology features a simple NiII salt, an organic base and catalytic amounts of both a pyridinium additive and Zn metal. A diverse number of (hetero)aryl halides were coupled successfully with primary and secondary alkyl amines, and anilines in good to excellent yields. Similarly, benzophenone imine gave the corresponding N-arylation product in an excellent yield.

8.
Angew Chem Int Ed Engl ; 59(10): 3876-3880, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31919933

RESUMO

Presented herein is the first direct alkylation and hydroxylation reaction between two different C(sp3 )-H bonds, indolin-2-ones and alkyl-substituted N-heteroarenes, through an oxidative cross-coupling reaction. The reaction is catalyzed by a simple iron salt under mild ligand-free and base-free conditions. The reaction is environmentally benign, employs air (molecular oxygen) as the terminal oxidant and oxygen source for the synthesis of O-containing compounds, and produces only water as the byproduct.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA