Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Rep ; 11(1): 9853, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972599

RESUMO

Much in vivo evidence indicates that cyclooxygenase-2 (COX-2) is deeply involved in tumorigenesis. Although it has been proposed that COX-2-derived pro-inflammatory prostanoids mediate the tumorigenic activity of COX-2, the tumorigenic mechanisms of COX-2 are not yet fully understood. Here, we investigated the mechanism by which COX-2 causes transformation from normal cells to malignant cells by using normal murine or human cells. We found that COX-2 inhibits the pro-senescent function of p53 under oncogenic RAS activation, by which it prevents oncogene-induced senescence (OIS) and induces neoplastic transformation. We also found that COX-2 physically interacts with p53 in the nucleus under oncogenic RAS activation, and that this COX-2-p53 interaction rather than the catalytic activity is involved in the COX-2-mediated inhibition of the pro-senescent function of p53 and OIS, and induction of neoplastic transformation. These findings strongly suggest that the oncogenic property of COX-2 is closely related to its ability to inactivate p53 under strong mitogenic signals, and that aberrant activation of the COX-2/a mitogenic oncogene combination can be a potent driving force for tumorigenesis. This study might contribute to our understanding of the molecular basis for the tumorigenic activity of COX-2 and the development of novel anti-tumor drugs targeting COX-2-p53 interactions.


Assuntos
Transformação Celular Neoplásica/patologia , Ciclo-Oxigenase 2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Núcleo Celular , Proliferação de Células , Células Cultivadas , Senescência Celular , Feminino , Fibroblastos , Humanos , Masculino , Camundongos , Cultura Primária de Células , Proteínas ras/metabolismo
2.
Front Oncol ; 11: 665420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959512

RESUMO

Although many cancer patients are administered radiotherapy for their treatment, the interaction between tumor cells and macrophages in the tumor microenvironment attenuates the curative effects of radiotherapy. The enhanced activation of mTOR signaling in the tumors promotes tumor radioresistance. In this study, the effects of rapamycin on the interaction between tumor cells and macrophages were investigated. Rapamycin and 3BDO were used to regulate the mTOR pathway. In vitro, tumor cells cocultured with macrophages in the presence of each drug under normoxic or hypoxic conditions were irradiated with γ-rays. In vivo, mice were irradiated with γ-radiation after injection with DMSO, rapamycin and 3BDO into tumoral regions. Rapamycin reduced the secretion of IL-4 in tumor cells as well as YM1 in macrophages. Mouse recombinant YM1 decreased the enhanced level of ROS and the colocalized proportion of both xCT and EEA1 in irradiated tumor cells. Human recombinant YKL39 also induced results similar to those of YM1. Moreover, the colocalized proportion of both xCT and LC3 in tumor tissues was elevated by the injection of rapamycin into tumoral regions. Overall, the suppression of mTOR signaling in the tumor microenvironment might be useful for the improvement of tumor radioresistance.

3.
Mol Cells ; 43(4): 397-407, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32264658

RESUMO

DNAJB9 is known to be a member of the molecular chaperone gene family, whose cellular function has not yet been fully characterized. Here, we investigated the cellular function of DNAJB9 under strong mitogenic signals. We found that DNAJB9 inhibits p53-dependent oncogene-induced senescence (OIS) and induces neoplastic transformation under oncogenic RAS activation in mouse primary fibroblasts. In addition, we observed that DNAJB9 interacts physically with p53 under oncogenic RAS activation and that the p53-interacting region of DNAJB9 is critical for the inhibition of p53-dependent OIS and induction of neoplastic transformation by DNAJB9. These results suggest that DNAJB9 induces cell transformation under strong mitogenic signals, which is attributable to the inhibition of p53-dependent OIS by physical interactions with p53. This study might contribute to our understanding of the cellular function of DNAJB9 and the molecular basis of cell transformation.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas de Choque Térmico HSP40/uso terapêutico , Proteínas de Membrana/uso terapêutico , Chaperonas Moleculares/uso terapêutico , Oncogenes/genética , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Proliferação de Células , Proteínas de Choque Térmico HSP40/farmacologia , Humanos , Proteínas de Membrana/farmacologia , Camundongos , Chaperonas Moleculares/farmacologia , Transfecção , Proteína Supressora de Tumor p53/metabolismo
4.
PLoS One ; 13(12): e0209653, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30586442

RESUMO

Macrophages are one of the major cell types that produce IL-1ß. IL-1ß maturation occurs via inflammasome activation, and mature IL-1ß is then released from the cell. Secreted IL-1ß mediates inflammatory reactions in various pathological environments, such as those in infectious, autoimmune, and cancerous diseases. Although the mechanism of IL-1ß production has been discovered in infectious and autoimmune diseases, its production mechanism in the tumor microenvironment is unclear. Therefore, the mechanism of IL-1ß production in macrophages in the tumor microenvironment was investigated in this study. First, bone marrow-derived macrophages obtained from C57BL/6 mice were treated with B16F10 tumor-conditioned media (TCM) in vitro. TCM increased the levels of IL-1ß via glucose-mediated activation of the inflammasome. Moreover, TCM enhanced the activation of both NF-κB and mTOR pathways in a glucose-dependent manner. In particular, the expression levels of mTORC1 component proteins were dependent on the TCM-induced activation of NF-κB signaling. In addition, TCM affected ASC-ASC interactions through increasing intracellular reactive oxygen species levels. Finally, glucose inhibition by inoculation with 2-deoxy-D-glucose in vivo decreased the IL-1ß levels in both the blood and tumor region of B16F10-bearing C57BL/6 mice relative to those in PBS-injected tumor-bearing mice. These results suggest that glucose supplied from blood vessels might be important for IL-1ß production in tumor-associated macrophages via the integrated signals of the NF-κB and mTOR pathways in the tumor microenvironment.


Assuntos
Inflamação/genética , Interleucina-1beta/genética , Melanoma Experimental/genética , Serina-Treonina Quinases TOR/genética , Animais , Vasos Sanguíneos/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Glucose/antagonistas & inibidores , Glucose/metabolismo , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , NF-kappa B/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
5.
Mol Cells ; 41(5): 465-475, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29764005

RESUMO

The advent of massively parallel sequencing, also called next-generation sequencing (NGS), has dramatically influenced cancer genomics by accelerating the identification of novel molecular alterations. Using a whole genome sequencing (WGS) approach, we identified somatic coding and noncoding variants that may contribute to leukemogenesis in 11 adult Korean acute myeloid leukemia (AML) patients, with serial tumor samples (primary and relapse) available for 5 of them; somatic variants were identified in 187 AML-related genes, including both novel (SIN3A, C10orf53, PTPRR, and RERGL) and well-known (NPM1, RUNX1, and CEPBA) AML-related genes. Notably, SIN3A expression shows prognostic value in AML. A newly designed method, referred to as "hot-zone" analysis, detected two putative functional noncoding variants that can alter transcription factor binding affinity near PPP1R10 and SRSF1. Moreover, the functional importance of the SRSF1 noncoding variant was further investigated by luciferase assays, which showed that the variant is critical for the regulation of gene expression leading to leukemogenesis. We expect that further functional investigation of these coding and noncoding variants will contribute to a more in-depth understanding of the underlying molecular mechanisms of AML and the development of targeted anti-cancer drugs.


Assuntos
Proteínas de Ligação a DNA/genética , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Fatores de Processamento de Serina-Arginina/genética , Adulto , Idoso , Análise Mutacional de DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Feminino , Regulação Leucêmica da Expressão Gênica , Ontologia Genética , Genes Reporter , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Nucleofosmina , Prognóstico , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/fisiologia , Proteínas Repressoras/química , Proteínas Repressoras/fisiologia , Fatores de Processamento de Serina-Arginina/química , Fatores de Processamento de Serina-Arginina/fisiologia , Complexo Correpressor Histona Desacetilase e Sin3 , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma , Adulto Jovem
6.
Genomics Inform ; 15(2): 56-64, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28638310

RESUMO

We have previously reported that NS-398, a cyclooxygenase-2 (COX-2)-selective inhibitor, inhibited replicative cellular senescence in human dermal fibroblasts and skin aging in hairless mice. In contrast, celecoxib, another COX-2-selective inhibitor, and aspirin, a non-selective COX inhibitor, accelerated the senescence and aging. To figure out causal factors for the senescence-modulating effect of the inhibitors, we here performed cDNA microarray experiment and subsequent Gene Set Enrichment Analysis. The data showed that several senescence-related gene sets were regulated by the inhibitor treatment. NS-398 up-regulated gene sets involved in the tumor necrosis factor ß receptor pathway and the fructose and mannose metabolism, whereas it down-regulated a gene set involved in protein secretion. Celecoxib up-regulated gene sets involved in G2M checkpoint and E2F targets. Aspirin up-regulated the gene set involved in protein secretion, and down-regulated gene sets involved in RNA transcription. These results suggest that COX inhibitors modulate cellular senescence by different mechanisms and will provide useful information to understand senescence-modulating mechanisms of COX inhibitors.

7.
Oncotarget ; 8(15): 24932-24948, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28212561

RESUMO

Toll-like receptor (TLR) ligands are strongly considered immune-adjuvants for cancer immunotherapy and have been shown to exert direct anti-cancer effects. This study was performed to evaluate the synergistic anti-cancer and anti-metastatic effects of the TLR7 agonist imiquimod (IMQ) during radiotherapy for melanoma. The pretreatment of B16F10 or B16F1 cells with IMQ combined with γ-ionizing radiation (IR) led to enhanced cell death via autophagy, as demonstrated by increased expression levels of autophagy-related genes, and an increased number of autophagosomes in both cell lines. The results also confirmed that the autophagy process was accelerated via the reactive oxygen species (ROS)-mediated MAPK and NF-κB signaling pathway in the cells pretreated with IMQ combined with IR. Mice subcutaneously injected with melanoma cells showed a reduced tumor growth rate after treatment with IMQ and IR. Treatment with 3-methyladenine (3-MA), ameliorated the anti-cancer effect of IMQ combined with IR. Additionally, the combination therapy enhanced anti-cancer immunity, as demonstrated by an increased number of CD8+ T cells and decreased numbers of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSCs) in the tumor lesions. Moreover, the combination therapy decreased the number of metastatic nodules in the lungs of mice that were injected with B16F10 cells via the tail vein. In addition, the combination therapy enhanced systemic anti-cancer immunity by increasing the abundances of T cell populations expressing IFN-γ and TNF-α. Therefore, these findings suggest that IMQ could serve as a radiosensitizer and immune booster during radiotherapy for melanoma patients.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/radioterapia , Glicoproteínas de Membrana/agonistas , Receptor 7 Toll-Like/agonistas , Animais , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Quimiorradioterapia , Modelos Animais de Doenças , Imiquimode , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL
8.
Yonsei Med J ; 57(4): 872-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27189279

RESUMO

PURPOSE: Lymphatic invasion (LI) is regarded as a predictor of the aggressiveness of ovarian cancer (OC). However, LI is not always the major determinant of long-term patient survival. To establish proper diagnosis and treatment for OC, we analyzed differentially expressed genes (DEGs) for patients with serous epithelial OC, with or without LI, who did or did not survive for 5 years. MATERIALS AND METHODS: Gene expression data from 63 patients with OC and LI, and 35 patients with OC but without LI, were investigated using an Affymetrix Human Genome U133 Array and analyzed using The Cancer Genome Atlas (TCGA) database. Among these 98 patients, 16 survived for 5 years or more. DEGs were identified using the Bioconductor R package, and their functions were analyzed using the DAVID web tool. RESULTS: We found 55 significant DEGs (p<0.01) from the patients with LI and 20 highly significant DEGs (p<0.001) from those without it. Pathway analysis showed that DEGs associated with carbohydrate metabolism or with renal cell carcinoma pathways were enriched in the patients with and without LI, respectively. Using the top five prognostic marker genes, we generated survival scores that could be used to predict the 5-year survival of patients with OC without LI. CONCLUSION: The DEGs identified in this study could be used to elucidate the mechanism of tumor progression and to guide the prognosis and treatment of patients with serous OC but without LI.


Assuntos
Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/mortalidade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Cistadenocarcinoma Seroso/patologia , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Análise em Microsséries , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Prognóstico , Análise de Regressão , Estudos Retrospectivos , Taxa de Sobrevida
9.
PLoS One ; 10(8): e0135817, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26305796

RESUMO

Single-cell sequencing, which is used to detect clinically important tumor subpopulations, is necessary for understanding tumor heterogeneity. Here, we analyzed transcriptomic data obtained from 34 single cells from human lung adenocarcinoma (LADC) patient-derived xenografts (PDXs). To focus on the intrinsic transcriptomic signatures of these tumors, we filtered out genes that displayed extensive expression changes following xenografting and cell culture. Then, we performed clustering analysis using co-regulated gene modules rather than individual genes to minimize read drop-out errors associated with single-cell sequencing. This combined approach revealed two distinct intra-tumoral subgroups that were primarily distinguished by the gene module G64. The G64 module was predominantly composed of cell-cycle genes. E2F1 was found to be the transcription factor that most likely mediates the expression of the G64 module in single LADC cells. Interestingly, the G64 module also indicated inter-tumoral heterogeneity based on its association with patient survival and other clinical variables such as smoking status and tumor stage. Taken together, these results demonstrate the feasibility of single-cell RNA sequencing and the strength of our analytical pipeline for the identification of tumor subpopulations.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Adenocarcinoma de Pulmão , Ciclo Celular/genética , Análise por Conglomerados , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genes Neoplásicos , Humanos , Estimativa de Kaplan-Meier , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , República da Coreia , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Cells ; 38(1): 26-32, 2015 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-25518931

RESUMO

Toll-like receptors (TLR) 7 and 9 transduce a cellular signal through the MyD88-dependent pathway and induce the production of inflammatory mediators against microbial nucleotide components. The repeated stimulation of TLR4 leads to endotoxin tolerance, but the molecular mechanisms of tolerance induced through the costimulation of individual TLR has not yet been established, although endosomal TLRs share signaling pathways with TLR4. In the present study, mouse macrophages were simultaneously stimulated with the TLR7 agonist, gardiquimod (GDQ), and the TLR9 agonist, CpG ODN 1826, to examine the mechanism and effector functions of macrophage tolerance. Compared with individual stimulation, the costimulation of both TLRs reduced the secretion of TNF-α and IL-6 through the delayed activation of the NF-κB pathway; notably, IL-10 remained unchanged in costimulated macrophages. This tolerance reflected the early induction of suppressor of cytokine signaling-1 (SOCS-1), according to the detection of elevated TNF-α secretion and restored NF-κB signaling in response to the siRNA-mediated abrogation of SOCS-1 signaling. In addition, the restimulation of each TLRs using the same ligand significantly reduced the expression of both TLRs in endosomes. These findings revealed that the costimulation of TLR7 and TLR9 induced macrophage tolerance via SOCS-1, and the restimulation of each receptor or both TLR7 and TLR9 downregulated TLR expression through a negative feedback mechanisms that protects the host from excessive inflammatory responses. Moreover, the insufficient and impaired immune response in chronic viral infection might also reflect the repeated and simultaneous stimulation of those endosomal TLRs.


Assuntos
Regulação para Baixo , Tolerância Imunológica , Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Aminoquinolinas/farmacologia , Animais , Células Cultivadas , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Glicoproteínas de Membrana/agonistas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/genética , Receptor 7 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas
11.
Genomics Inform ; 12(4): 247-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25705166

RESUMO

Osteosarcoma is the most common primary bone tumor, generally affecting young people. While the etiology of osteosarcoma has been largely unknown, recent studies have suggested that cyclooxygenase-2 (COX-2) plays a critical role in the proliferation, migration, and invasion of osteosarcoma cells. To understand the mechanism of action of COX-2 in the pathogenesis of osteosarcoma, we compared gene expression patterns between three stable COX-2-overexpressing cell lines and three control cell lines derived from U2OS human osteosarcoma cells. The data showed that 56 genes were upregulated, whereas 20 genes were downregulated, in COX-2-overexpressed cell lines, with an average fold-change > 1.5. Among the upregulated genes, COL1A1, COL5A2, FBN1, HOXD10, RUNX2, and TRAPPC2are involved in bone and skeletal system development, while DDR2, RAC2, RUNX2, and TSPAN31are involved in the positive regulation of cell proliferation. Among the downregulated genes, HIST1H1D, HIST1H2AI, HIST1H3H, and HIST1H4C are involved in nucleosome assembly and DNA packaging. These results may provide useful information to elucidate the molecular mechanism of the COX-2-mediated malignant phenotype in osteosarcoma.

12.
Planta ; 237(1): 161-72, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23001196

RESUMO

We characterized the gene expression, subcellular localization, and in vivo functions of a Nicotiana benthamiana small GTPase belonging to the RabE family, designated NbRabE1. The NbRabE1 promoter drove strong ß-glucuronidase reporter expression in young tissues containing actively dividing cells and in stomata guard cells. GFP fusion proteins of NbRabE1 and its dominant-negative and constitutively active mutants were all localized to the Golgi apparatus and the plasma membrane but showed different affinities for membrane attachment. Virus-induced gene silencing of NbRabE1 resulted in pleiotropic phenotypes, including growth arrest, premature senescence, and abnormal leaf development. At the cellular level, the leaves in which NbRabE1 was silenced contained abnormal stomata that lacked pores or contained incomplete ventral walls, suggesting that NbRabE1 deficiency leads to defective guard cell cytokinesis. Ectopic expression of the dominant-negative mutant of NbRabE1 in Arabidopsis thaliana resulted in retardation of shoot and root growth accompanied by defective root hair formation. These developmental defects are discussed in conjunction with proposed functions of RabE GTPases in polarized secretory vesicle trafficking.


Assuntos
Mutação , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas rab de Ligação ao GTP/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Western Blotting , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Glucuronidase/genética , Glucuronidase/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/ultraestrutura , Vírus de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/crescimento & desenvolvimento , Nicotiana/virologia , Proteínas rab de Ligação ao GTP/classificação , Proteínas rab de Ligação ao GTP/metabolismo
13.
Exp Mol Med ; 44(9): 536-44, 2012 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22771771

RESUMO

It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1.


Assuntos
Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Ciclo-Oxigenase 2 , Nitrobenzenos/administração & dosagem , Envelhecimento da Pele/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Animais , Aspirina/administração & dosagem , Catálise , Caveolina 1/genética , Caveolina 1/metabolismo , Celecoxib , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/fisiologia , Regulação da Expressão Gênica , Camundongos , Pirazóis/administração & dosagem , Envelhecimento da Pele/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
14.
Mol Cell Biochem ; 368(1-2): 61-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22581442

RESUMO

Type I collagen is the major constituent of the skin and the reduction of dermal type I collagen content is closely associated with the intrinsic skin aging. We here found that esculetin, 6,7-dihydroxycoumarin, strongly induces type I procollagen expression in human dermal fibroblasts. Esculetin not only increased protein levels of type I procollagen but also increased mRNA levels of COL1A1 but not COL1A2. Esculetin activated the MAPKs (ERK1/2, p38, JNK) and PI3K/Akt pathways, through which it promoted the type I procollagen expression. We also demonstrated that the binding motifs for transcription factor Sp1 occur with the highest frequency in the COL1A1 promoter and that esculetin increases the Sp1 expression through the MAPK and PI3K/Akt pathways. These results suggest that esculetin promotes type I procollagen expression through the MAPK and PI3K/Akt pathways and that Sp1 might be involved in the esculetin-induced type I procollagen expression via activation of the COL1A1 transcription.


Assuntos
Antioxidantes/farmacologia , Colágeno Tipo I/biossíntese , Derme/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ativação Transcricional/efeitos dos fármacos , Umbeliferonas/farmacologia , Células Cultivadas , Cadeia alfa 1 do Colágeno Tipo I , Derme/citologia , Fibroblastos/citologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Elementos de Resposta/fisiologia , Fator de Transcrição Sp1/metabolismo , Ativação Transcricional/fisiologia
15.
Plant Cell ; 23(1): 185-209, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21216945

RESUMO

Tap42/α4, a regulatory subunit of protein phosphatase 2A, is a downstream effector of the target of rapamycin (TOR) protein kinase, which regulates cell growth in coordination with nutrient and environmental conditions in yeast and mammals. In this study, we characterized the functions and phosphatase regulation of plant Tap46. Depletion of Tap46 resulted in growth arrest and acute plant death with morphological markers of programmed cell death. Tap46 interacted with PP2A and PP2A-like phosphatases PP4 and PP6. Tap46 silencing modulated cellular PP2A activities in a time-dependent fashion similar to TOR silencing. Immunoprecipitated full-length and deletion forms of Arabidopsis thaliana TOR phosphorylated recombinant Tap46 protein in vitro, supporting a functional link between Tap46 and TOR. Tap46 depletion reproduced the signature phenotypes of TOR inactivation, such as dramatic repression of global translation and activation of autophagy and nitrogen mobilization, indicating that Tap46 may act as a positive effector of TOR signaling in controlling those processes. Additionally, Tap46 silencing in tobacco (Nicotiana tabacum) BY-2 cells caused chromatin bridge formation at anaphase, indicating its role in sister chromatid segregation. These findings suggest that Tap46, in conjunction with associated phosphatases, plays an essential role in plant growth and development as a component of the TOR signaling pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Morte Celular , Regulação da Expressão Gênica de Plantas , Fosfatidilinositol 3-Quinases , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA de Plantas/genética , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
16.
Biochim Biophys Acta ; 1793(8): 1354-65, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19465063

RESUMO

Cyclooxygenase-2 (COX-2), an endoplasmic reticulum-resident protein, has been known to promote tumorigenesis, but the exact mechanisms involved have not been identified. We have previously reported that COX-2 physically interacts with the tumor suppressor p53 and regulates its function. However, it remains to be elucidated how COX-2 can interact with p53 residing in different compartments and whether their interaction is involved in the regulation of p53 function. We here demonstrated that upon genotoxic stress, COX-2 and p53 accumulate in the nucleus, where they physically interact with one another. We also showed that an amino-terminal region (amino acids 1-126) of COX-2 interacts with the DNA-binding domain of p53. The p53-interacting region was critical for COX-2-mediated inhibition of p53 DNA-binding and transcriptional activity as well as p53- and genotoxic stress-induced apoptosis. In addition, an active site mutant of COX-2 (S516Q) as well as wild-type COX-2 potently inhibited p53 transcriptional activity and genotoxic stress-induced apoptosis. These results suggest that COX-2 principally inhibits p53 function through a catalytic activity-independent mechanism and that COX-2 inhibits p53 function through a physical interaction with p53 in the nucleus. These findings provide novel insight into the action mechanisms of COX-2 and strongly suggest that the functional inactivation of p53 by COX-2 can be one of the mechanisms by which COX-2 promotes tumorigenesis.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Dano ao DNA , Primers do DNA/genética , Humanos , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Transcrição Gênica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
17.
Mech Ageing Dev ; 129(12): 706-13, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18848576

RESUMO

It has been recently proposed that pro-inflammatory genes such as cyclooxygenase-2 (COX-2) play a key role in the aging process. However, it remains unclear whether the pro-inflammatory activity of COX-2 is involved in the aging process and whether COX-2 inhibitors prevent aging. We therefore examined the effect of COX-2 inhibitors on aging in the cellular senescence model of human dermal fibroblasts (HDFs). While the catalytic activity of COX-2 was observed to increase in the senescence process, we found that among three selective COX-2 inhibitors studied, only NS-398 inhibited the senescence whereas celecoxib and nimesulide accelerated the senescence. Non-selective COX inhibitors including aspirin, ibuprofen and flurbiprofen accelerated the senescence. The senescence-regulating effect of selective COX-2 inhibitors had no correlation with cellular reactive oxygen species levels, NF-kappaB activities or protein levels of p53 and p21. We instead found that selective COX-2 inhibitors regulate caveolin-1 expression at transcriptional levels, which was closely associated with the inhibitors' effect on the senescence. Collectively, these results suggest that COX-2 catalytic activity does not mediate HDF senescence and that selective COX-2 inhibitors modulate HDF senescence by a catalytic activity-independent mechanism.


Assuntos
Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Aspirina/farmacologia , Caveolina 1/metabolismo , Celecoxib , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Flurbiprofeno/farmacologia , Humanos , Ibuprofeno/farmacologia , Cinética , Modelos Biológicos , NF-kappa B/metabolismo , Nitrobenzenos/farmacologia , Pirazóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Pele/citologia , Pele/efeitos dos fármacos , Pele/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/fisiologia , Sulfonamidas/farmacologia , Proteína Supressora de Tumor p53/metabolismo
18.
Exp Mol Med ; 39(4): 469-76, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17934334

RESUMO

Osteosarcoma is the most common primary bone tumor, but the pathogenesis is not well understood. While cyclooxygeanse-2 (COX-2) is known to be closely associated with tumor growth and metastasis in several kinds of human tumors, the function of COX-2 in osteosarcoma is unclear. Therefore, to investigate the function of COX-2 in osteosarcoma, we established stable cell lines overexpressing COX-2 in U2OS human osteosarcoma cells. COX-2 overexpression as well as prostaglandin E2 treatment promoted proliferation of U2OS cells. In addition, COX-2 overexpression enhanced mobility and invasiveness of U2OS cells, which was accompanied by increases of matrix metalloproteinase-2 and -9 (MMP-2 and -9) activities. Selective COX-2 inhibitors, NS-398 and celecoxib, inhibited cell proliferation and abrogated the enhanced mobility, invasiveness and MMP activities induced by COX-2 overexpression. These results suggest that COX-2 is directly associated with cell proliferation, migration and invasion in human osteosarcoma cells, and the therapeutic value of COX-2 inhibitors should be evaluated continuously.


Assuntos
Neoplasias Ósseas/enzimologia , Ciclo-Oxigenase 2/fisiologia , Osteossarcoma/enzimologia , Neoplasias Ósseas/patologia , Celecoxib , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Ciclo-Oxigenase 2/biossíntese , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/farmacologia , Ativação Enzimática , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Nitrobenzenos/farmacologia , Osteossarcoma/patologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia
19.
FASEB J ; 20(13): 2375-7, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17012241

RESUMO

Cyclooxygenase-2 (COX-2) has been implicated in neuronal survival and death. However, the precise regulatory mechanisms involved in COX-2 function are unclear. In the present study we found that COX-2 is induced in response to glutathione depletion-induced oxidative stress in primary cortical neurons. Two proximal specific Sp1 and Sp3 binding sites are responsible for the COX-2 promoter activity under normal as well as oxidative stress conditions through enhanced Sp1 and Sp3 DNA binding activity. Site-directed mutagenesis confirmed that -268/-267 positions serve as specific Sp1 and Sp3 recognition sites under oxidative stress. Enforced expression of Sp1 and Sp3 using HSV vectors increased the promoter activity, transcription, and protein level of COX-2 in cortical neurons. The dominant negative form of Sp1 abrogated the oxidative stress-induced promoter activity and expression of COX-2. We also demonstrated that adenovirus-mediated COX-2 gene delivery protected neurons from DNA damage induced by oxidative, genotoxic, and excitotoxic stresses and by ischemic injury. Moreover, COX-2(-/-) cortical neurons were more susceptible to DNA damage-induced cell death. These results indicate that in primary neurons Sp1 and Sp3 play an essential role in the modulation of COX-2 transcription, which mediates neuronal homeostasis and survival by preventing DNA damage in response to neuronal stress.


Assuntos
Córtex Cerebral/enzimologia , Ciclo-Oxigenase 2/genética , Dano ao DNA , Neurônios/fisiologia , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp2/metabolismo , Animais , Sequência de Bases , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Sobrevivência Celular , Clonagem Molecular , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/deficiência , Primers do DNA , Humanos , Camundongos , Camundongos Knockout , Neurônios/citologia , Neurônios/patologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Proteomics ; 6(4): 1110-20, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16402361

RESUMO

We modified gold arrays with a glutathione (GSH) surface, and investigated high-throughput protein interactions with a spectral surface plasmon resonance (SPR) biosensor. We fabricated the GSH exterior on gold surfaces by successive modification with aminoethanethiol, 4-maleimidobutyric acid N-hydroxysuccinimide ester and GSH. We immobilized GST-Rac1, GST-RhoA, the GST-Rho-binding domain of rhotekin and the GST-p21-binding domain of PAK1 onto the GSH surface, and observed specific antigen-antibody interactions on the GST-fusion protein arrays. We determined the expression of GST-fusion proteins in Escherichia coli on the GSH surface with the SPR biosensor. We then analyzed the interactions of tissue transglutaminase (tTGase), a Ca2+-dependent enzyme, with RhoA and Rac1 on the GST-fusion protein arrays with the SPR biosensor. We found that tTGase interacted with RhoA and Rac1 in a Ca2+-dependent manner, indicating that the interactions were dependent on tTGase activity. In addition, transamidation of Rac1 by tTGase was dependent on Ca2+ concentration. We obtained similar results with GST pull-down assays. Thus, protein arrays prepared on the GSH surface provide a useful system for the high-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions with the spectral SPR biosensors.


Assuntos
Técnicas Biossensoriais , Análise Serial de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Ressonância de Plasmônio de Superfície , Proteínas Reguladoras de Apoptose , Proteínas de Ligação ao GTP , Glutationa/química , Glutationa Transferase/metabolismo , Ouro/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Transglutaminases/metabolismo , Quinases Ativadas por p21 , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA