Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171637, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479528

RESUMO

Wastewater treatment plants (WWTPs) have been regarded as the main sources of greenhouse gas (GHG) emissions. This study compares the influent characteristics of industrial wastewater represented by the WWTP of paper mill and that of domestic sewage represented by the Benchmark Simulation Model No. 1 (BSM1) under stormy weather. The various sources of GHG emissions from the two processes are calculated, and the contribution of each source to the total GHG emissions is assessed. Firstly, based on the mass balance analysis and the recognized emission factors, a GHG emission calculation model was established for the on-site and off-site GHG emission sources from the WWTP of paper mill. Simultaneously, a GHG emission experimental model was established by determining the dissolved concentrations of carbon dioxide (CO2) and nitrous oxide (N2O) in the papermaking wastewater, to verify the accuracy of the developed GHG calculation model. Subsequently, an optimum aeration rate for the paper mill was investigated to comply with the discharging norms. Under the optimum aeration rate of 10 h-1, the obtained calculation accuracies of CO2 and N2O emissions were 94.6 % and 91.1 %, respectively. The mean total GHG emission in the WWTP of paper mill was 550 kg CO2-eq·h-1, of which 44.6 % came from the on-site emission sources and 55.4 % from the off-site emission sources. It was also uncovered that the electrical consumption for aeration was the largest contributor to the total GHG emissions with a proportion of 25.2 %, revealing that the control strategy of the aeration rate is highly significant in reducing GHG emissions in WWTP of paper mills.

2.
Artigo em Chinês | MEDLINE | ID: mdl-38297854

RESUMO

Objective:To investigate the management of granulation tissue during surgery for infected congenital preauricular fistula and to assess the surgical outcomes. Methods:To summarize the surgical methods and the treatment of granulation methods in 140 cases of congenital preauricular fistula during the period of infection treated in our department from January 2018 to September 2022. The study divided patients into an observation group (79 patients) undergoing fistulectomy without granulation treatment, and a control group (61 patients) where fistulectomy and granulation resection were performed concurrently.. After six months of follow-up, the wound healing, recurrence rates, and the aesthetic assessment of granulation healing were evaluated using the Stony Brook Scar Evaluation Scale(SBSES). Results:The two surgical approaches were applied to a total of 140 patients with infected congenital preauricular fistula. There was no statistical difference in wound healing and recurrence rates between the observation group and the control group. However, the observation group exhibited smaller scars. Conclusion:In cases of infected congenital preauricular fistula, surgical removal without excising granulation tissue is feasible, leading to effective healing and lesser scar formation.


Assuntos
Anormalidades Craniofaciais , Fístula , Humanos , Cicatriz , Cicatrização , Fístula/cirurgia , Resultado do Tratamento
3.
FASEB J ; 38(1): e23334, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38050647

RESUMO

Mesenchymal stem cells (MSCs) are a popular cell source for repairing the liver. Improving the survival rate and colonization time of MSCs may significantly improve the therapeutic outcomes of MSCs. Studies showed that 78-kDa glucose-regulated protein (GRP78) expression improves cell viability and migration. This study aims to examine whether GRP78 overexpression improves the efficacy of rat bone marrow-derived MSCs (rBMSCs) in HS-induced liver damage. Bone marrow was isolated from the femurs and tibias of rats. rBMSCs were transfected with a GFP-labeled GRP78 expression vector. Flow cytometry, transwell invasion assay, scratch assay immunoblotting, TUNEL assay, MTT assay, and ELISA were carried out. The results showed that GRP78 overexpression enhanced the migration and invasion of rBMSCs. Moreover, GRP78-overexpressing rBMSCs relieved liver damage, repressed liver oxidative stress, and inhibited apoptosis. We found that overexpression of GRP78 in rBMSCs inhibited activation of the NLRP3 inflammasome, significantly decreased the levels of inflammatory factors, and decreased the expression of CD68. Notably, GRP78 overexpression activated the Nrf-2/HO-1 pathway and inhibited the NF-κB pathway. High expression of GRP78 efficiently enhanced the effect of rBMSC therapy. GRP78 may be a potential target to improve the therapeutic efficacy of BMSCs.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Chaperona BiP do Retículo Endoplasmático , Células-Tronco Mesenquimais , Choque Hemorrágico , Animais , Ratos , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Choque Hemorrágico/metabolismo
4.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119571, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673222

RESUMO

Mesenchymal stem cells (MSCs) have favourable outcomes in the treatment of kidney diseases. Pre-B-cell leukaemia transcription factor 1 (PBX1) has been reported to be a regulator of self-renewal of stem cells. Whether PBX1 is beneficial to MSCs in the treatment of haemorrhagic shock (HS)-induced kidney damage is unknown. We overexpressed PBX1 in rat bone marrow-derived mesenchymal stem cells (rBMSCs) and human bone marrow-derived mesenchymal stem cells (hBMSCs) to treat rats with HS and hypoxia-treated human proximal tubule epithelial cells (HK-2), respectively. The results indicated that PBX1 enhanced the homing capacity of rBMSCs to kidney tissues and that treatment with rBMSCs overexpressing PBX1 improved the indicators of kidney function, alleviated structural damage to kidney tissues. Furthermore, administration with rBMSCs overexpressing PBX1 inhibited HS-induced NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and the release of proinflammatory cytokines, and further attenuated apoptosis. We then determined whether NF-κB, an important factor in NLRP3 activation and the regulation of inflammation, participates in HS-induced kidney damage, and we found that rBMSCs overexpressing PBX1 inhibited NF-κB activation by decreasing the p-IκBα/IκBα and p-p65/p65 ratios and inhibiting the nuclear translocation and decreasing the DNA-binding capacity of NF-κB. hBMSCs overexpressing PBX1 also exhibited protective effects on HK-2 cells exposed to hypoxia, as shown by the increase in cell viability, the mitigation of apoptosis, the decrease in inflammation, and the inhibition of NF-κB and NLRP3 inflammasome activation. Our study demonstrates that MSCs overexpressing PBX1 ameliorates HS-induced kidney damage by inhibiting NF-κB pathway-mediated NLRP3 inflammasome activation and the inflammatory response.


Assuntos
Nefropatias , Células-Tronco Mesenquimais , NF-kappa B , Fator de Transcrição 1 de Leucemia de Células Pré-B , Choque Hemorrágico , Animais , Humanos , Ratos , Hipóxia , Inflamassomos , Inflamação , Rim , Nefropatias/genética , Nefropatias/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Choque Hemorrágico/complicações , Choque Hemorrágico/genética , Choque Hemorrágico/terapia
5.
Heliyon ; 9(11): e22090, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027636

RESUMO

Radiation resistance has always been one of the main obstacles to tumor radiotherapy. Therefore, understanding the mechanisms underlying radiotherapy resistance is a focus of research. In this study, we induced two radiation-resistant cell lines to mimic the radiation resistance of NSCLC and investigated the mechanisms of radiotherapy resistance. Cell radiosensitivity was analyzed by single-cell gel electrophoresis, colony formation and tumor sphere formation assays. A wound healing assay was used to analyze cell migration. Western blotting and siRNA were used to identify the potential mechanism. In animal model experiments, xenograft tumors were used to verify the difference between radiotherapy-resistant and nonresistant NSCLC models after radiotherapy. Our results showed that NSCLC radiation-resistant cells exhibited more radioresistance and migratory abilities under low-dose irradiation. The expression of LIMK2 and p-CFL1 were upregulated in NSCLC radiation-resistant cells. Knockdown of LIMK2 significantly enhanced the radiosensitivity of NSCLC-resistant cells. In vivo, low-dose radiotherapy suppressed tumor growth, induced apoptosis and upregulated the expression of LIMK2 in xenograft tumors. However, radiotherapy had little effect on the NSCLC radiation resistance model. In conclusion, NSCLC radiation-resistant cells exhibit more radioresistance and migratory ability under low-dose irradiation. Strikingly, knockdown of LIMK2 enhanced the radiosensitivity of NSCLC-resistant cells.

6.
ACS Appl Mater Interfaces ; 15(30): 35999-36012, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37477904

RESUMO

Due to the intrinsic weak immunogenicity of tumor cells and the quantitatively and functionally different populations of immune cells, immunosuppression has become the major obstacle for cancer immunotherapy. In this study, the biocompatible alginate was chemically modified with the carboxyethyl linker to facilitate the esterification reaction of the resultant carboxymethylated alginate (CMA) and resiquimod (R848), the agonist of Toll-like receptor 7/8 (TLR7/8a). In aqueous solution, the hydrophilic CMA and the hydrophobic R848 formed stable nanomicelles (CMA-R848) by self-assembling. After combined administration of CMA-R848 and cisplatin (Cis) in a gastric cancer (GC) model, the long-circulating CMA-R848 micelle reached the mild acidic tumor microenvironment (TME); the ester bonds were quickly cleaved by the ubiquitous esterase and released the single molecule of R848. In vitro and in vivo results demonstrated that the released R848 efficiently promoted co-stimulatory molecules' expression of dendritic cells (DCs), enhanced the antigen uptake and cross-presentation, and primed the cytotoxic T lymphocytes' (CTLs) infiltration and killing effects, thereby reprogramming the "cold tumor" into the "hot tumor". In addition, the ex vivo tumor sections revealed that the released R848 effectively repolarized the M2-like tumor-associated macrophages (TAMs) into M1-like macrophages, exerted synergistic antitumor activity, reduced the tumor burden, and prolonged the overall survival duration of the GC animal model. Our study provided a targeting therapeutic strategy overcoming the limitations of R848 in vivo, and enhanced the efficacy of GC chemotherapy and immunotherapy by TME modulation.


Assuntos
Micelas , Neoplasias Gástricas , Animais , Neoplasias Gástricas/tratamento farmacológico , Microambiente Tumoral , Imunoterapia/métodos , Imunossupressores
7.
Folia Histochem Cytobiol ; 61(2): 109-122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435898

RESUMO

INTRODUCTION: Hemorrhagic shock (HS) is an important cause of high mortality in traumatized patients. Cryptotanshinone (CTS) is a bioactive compound extracted from Salvia miltiorrhiza Bunge (Danshen). The current study aimed to explore the effect and underlying mechanism of CTS on the liver injury induced by HS. MATERIAL AND METHODS: Male Sprague-Dawley rats were used to establish the HS model by hemorrhaging and monitoring mean arterial pressure (MAP). CTS was intravenously administered at concentration of 3.5 mg/kg, 7 mg/kg, or 14 mg/kg 30 minutes before resuscitation. Twenty-four hours after resuscitation, the liver tissue and serum samples were collected for the following examinations. Hematoxylin and eosin (H&E) staining was used to evaluate hepatic morphology changes. The myeloperoxidase (MPO) activity in liver tissue and the serum activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were examined to reveal the extent of liver injury. The protein expression of Bax and Bcl-2 in liver tissue was detected by western blot. The TUNEL assay determined the apoptosis of hepatocytes. Oxidative stress of liver tissue was assessed by the examination of reactive oxygen species (ROS) generation. The content of malondialdehyde (MDA), glutathione (GSH), and adenosine triphosphate (ATP), the activity of superoxide dismutase (SOD) and oxidative chain complexes (complex I, II, III, IV), as well as cytochrome c expression in cytoplasm and mitochondria, were also used to determine the extent of oxidative injury in the liver. Immunofluorescence (IF) was employed to estimate nuclear factor E2-related factor 2 (Nrf2) expression. The mRNA and protein levels of heme oxygenase 1 (HO-1), NAD(P)H: quinone oxidoreductases 1 (NQO1), cyclooxygenase-2 (COX-2), and nitric oxide synthase (iNOS) were assessed by real-time qPCR, western blot to investigate the mechanism of CTS regulating HS-induced liver injury. RESULTS: H&E staining and a histological score of rat liver suggested that HS induced liver injury. The activity of ALT, AST, and MPO was significantly increased by HS treatment. After CTS administration the ALT, AST, and MPO activities were suppressed, which indicates the liver injury was alleviated by CTS. The HS-induced upregulation of the TUNEL-positive cell rate was suppressed by various doses of CTS. HS-induced ROS production was decreased and the protein expression of Bax and Bcl-2 in the HS-induced rat liver was reversed by CTS administration. In the liver of HS-induced rats, the upregulation of MDA content and the downregulation of GSH content and SOD activitywere suppressed by CTS. Additionally, CTS increases ATP content and mitochondrial oxidative complexes activities and suppressed the release of cytochrome c from mitochondria to the cytoplasm. Moreover, IF and western blot demonstrated that the activation of Nrf2 blocked by HS was recovered by different doses of CTS in liver tissue. The expression of downstream enzymes of the Nrf2 pathway, including HO-1, NQO1, COX-2, and iNOS, was reversed by CTS in the HS rat model. CONCLUSIONS: The current study for the first time revealed the protective effect of CTS in HS-induced liver injury. CTS effectively recovered hepatocyte apoptosis, oxidative stress, and mitochondria damage induced by HS in the rat liver partly via regulating the Nrf2 signaling pathway.


Assuntos
Hepatopatias , Fator 2 Relacionado a NF-E2 , Fenantrenos , Choque Hemorrágico , Transdução de Sinais , Animais , Masculino , Ratos , Proteína X Associada a bcl-2 , Ciclo-Oxigenase 2 , Citocromos c , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Choque Hemorrágico/complicações , Choque Hemorrágico/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Hepatopatias/etiologia , Fenantrenos/uso terapêutico
8.
Int Immunopharmacol ; 123: 110693, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37506505

RESUMO

Severe hemorrhagic shock (HS) leads to lung injury, resulting in respiratory insufficiency. Mesenchymal stem cell (MSC)-derived exosomes have therapeutic effects on the organ injury. HSF1 has been reported to protect the lung against injury. In this study, the role of exosomes from HSF1-overexpressed MSCs (HSF1-EVs) in HS-induced lung injury was investigated. We constructed a mouse model of lung injury by induction with HS and pre-treated it with HSF1-EVs. It was clarified that HSF1-EVs manifested better protective effects on HS-induced lung injury compared with the exosomes derived from control MSCs. Inhalation of HSF1-EVs declined the ratio of wet to dry and total protein concentration in bronchoalveolar lavage fluids. Besides, HSF1-EVs greatly inhibited the production of inflammatory cytokines (IL-1ß, IL-6, MCP-1 and HMGB1), and constrained the pulmonary neutrophilic infiltration induced by HS. A reduction of oxidative stress was observed in HSF1-EV-treated mice. HSF1-EVs suppressed the HS-induced apoptosis of lung cell and downregulated Bcl-2 expression, while promoting Bax expression. The key proteins of pulmonary epithelial barrier, E-cadherin, ZO-1 and Occludin, were all upregulated in HS-treated mice after HSF1-EV inhalation, suggesting that HSF1-EVs played a protective role in the epithelial barrier of lung. Additionally, the results of proteomics showed that HSF1 overexpression altered the protein profile of MSC-derived exosomes, which might explain the more significant relief effect of HSF1-EVs on lung injury compared with that of Plasmid-EVs. These new findings demonstrated that the exosomes secreted by HSF1-overexpressed MSCs can be an effective precautionary measure for lung injury induced by HS.


Assuntos
Exossomos , Lesão Pulmonar , Células-Tronco Mesenquimais , Choque Hemorrágico , Animais , Camundongos , Exossomos/metabolismo , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Células-Tronco Mesenquimais/metabolismo , Choque Hemorrágico/terapia , Fatores de Transcrição de Choque Térmico/metabolismo
9.
Foods ; 12(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37048380

RESUMO

In this study, a typical tea polyphenol epicatechin (EC) was investigated for its impact on the oxidative stability of whey protein isolate (WPI) in a fish oil-fortified emulsion. The oil-in-water emulsion system consisted of fish oil (1%, w/w), WPI (6 mg/mL), and EC (0.1, 1, and 2 mM), and the oxidation reaction was catalyzed by Fenton's reagent at 25 °C for 24 h. The results showed EC exhibited a dose-dependent activity in the reduction of lipid oxidation (TBARS) and protein carbonylation. A Western blot analysis demonstrated that protein lipoxidation was inhibited by EC via interrupting the covalent binding of lipid secondary oxidation products, MDA, onto proteins. In addition, protein lipoxidation induced a loss of tryptophan fluorescence, and protein hydrolysis was partially recovered by EC. The findings of this study provide an in-depth understanding of the performance of phenolic antioxidants in relieving lipid oxidation and subsequent protein lipoxidation in oil-containing dairy products.

10.
Am J Chin Med ; 51(4): 979-996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37036317

RESUMO

Hemorrhagic shock (HS) is defined as a reduction in tissue oxygenation and organ dysfunction due to severe blood loss. Lung injury is a frequent complication of HS. Baicalin, isolated from Radix Scutellariae, has been reported to profile the antitumor, anti-oxidative, anti-inflammatory, and antibacterial roles in various pathological processes. Nevertheless, the effects of baicalin on HS-induced lung injury are unclear. This study aims to examine the therapeutic effects of baicalin on lung injury. We first established the lung injury rat models by withdrawing blood in the femoral artery followed by resuscitation. A pathological analysis showed that HS-administrated rats presented severe capillary leakage and pulmonary edema, while baicalin therapy alleviated the symptoms. Baicalin therapy reduced the number of macrophages and neutrophils in bronchoalveolar lavage fluid and decreased the expression and activity of myeloperoxidase (neutrophile infiltration marker) in the lung tissues of HS rats, indicating that baicalin alleviated HS-induced infiltration of inflammatory cells. The secretion of inflammatory cytokines, including interleukin (IL)-1[Formula: see text], IL-6, IL-18, and tumor necrosis factor [Formula: see text] (TNF-[Formula: see text]), as well as the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing-3 (NLRP3) inflammasome, were inhibited by baicalin administration. Furthermore, we found that the NF-[Formula: see text]B pathway, a canonical pro-inflammatory pathway, was also blocked after treatment with baicalin in HS-evoked rats, as indicated by the decreased expression of p65 and p65 phosphorylation in the lung tissues. In summary, we infer that baicalin may exert a protective role in HS-induced lung injury by suppressing the activation of NLRP3 inflammasome via the NF-[Formula: see text]B pathway.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Anti-Inflamatórios , Lesão Pulmonar Aguda/induzido quimicamente , NF-kappa B/metabolismo
11.
Folia Histochem Cytobiol ; 61(1): 56-67, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36880683

RESUMO

INTRODUCTION: Acute pulmonary embolism (APE) is a clinical syndrome of pulmonary circulation disorder caused by obstruction of the pulmonary artery or its branches. Histone deacetylase 6 (HDAC6) has been reported to play an important role in lung-related diseases. However, the functional role of HDAC6 in APE remains unclear. MATERIAL AND METHODS: Male Sprague Dawley rats were used. The APE model was constructed by inserting an intravenous cannula into the right femoral vein and injecting Sephadex G-50 microspheres (12 mg/kg; 300 µm in diameter). After 1 h, the control and APE rats were intraperitoneally injected with tubastatin A (TubA) (40 mg/kg, an inhibitor of HDAC6) and sampled at 24 h after modeling. H&E staining, arterial blood gas analysis, and wet/dry (W/D) weight ratio were used to evaluate the histopathological changes and pulmonary function in APE rats. ELISA, Western blot, and immunohistochemistry were used to explore the potential mechanism of HDAC6-mediated inflammation in APE. RESULTS: The results indicated that HDAC6 expression was significantly increased in lungs of APE rats. TubA treatment in vivo decreased HDAC6 expression in lung tissues. HDAC6 inhibition alleviated histopathological damage and pulmonary dysfunction, as evidenced by decreased PaO2/FiO2 ratio and W/D weight ratio in APE rats. Furthermore, HDAC6 inhibition alleviated APE-induced inflammatory response. Specifically, APE rats exhibited increased production of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, IL-6, and IL-18, however, this increase was reversed by HDAC6 inhibition. Meanwhile, the activation of the NLRP3 inflammasome was also observed in lungs of APE rats, while HDAC6 inhibition blocked this activation. Mechanically, we demonstrated that HDAC6 inhibition blocked the activation of the protein kinase B (AKT)/extracellular signal-regulated protein kinase (ERK) signaling pathway, a classic pathway promoting inflammation. CONCLUSIONS: These findings demonstrate that the inhibition of HDAC6 may alleviate lung dysfunction and pathological injury resulting from APE by blocking the AKT/ERK signaling pathway, providing new theoretical fundamentals for APE therapy.


Assuntos
Hominidae , Embolia Pulmonar , Ratos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Desacetilase 6 de Histona , Ratos Sprague-Dawley , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/metabolismo , Inflamação , Fator de Necrose Tumoral alfa , MAP Quinases Reguladas por Sinal Extracelular , Hominidae/metabolismo
12.
BMC Neurosci ; 24(1): 17, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869312

RESUMO

BACKGROUND: Microglial polarization and the subsequent neuroinflammatory response and oxidative stress are contributing factors for traumatic brain injury (TBI) plus hemorrhagic shock (HS) induced brain injury. In the present work, we have explored whether Lysine (K)-specific demethylase 4 A (KDM4A) modulates microglia M1 polarization in the TBI and HS mice. RESULTS: Male C57BL/6J mice were used to investigate the microglia polarization in the TBI + HS model in vivo. Lipopolysaccharide (LPS)-induced BV2 cells were used to examine the mechanism of KDM4A in regulating microglia polarization in vitro. We found that TBI + HS resulted in neuronal loss and microglia M1 polarization in vivo, reflected by the increased level of Iba1, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, malondialdehyde (MDA) and the decreased level of reduced glutathione (GSH). Additionally, KDM4A was upregulated in response to TBI + HS and microglia were among the cell types showing the increased level of KDM4A. Similar to the results in vivo, KDM4A also highly expressed in LPS-induced BV2 cells. LPS-induced BV2 cells exhibited enhanced microglia M1 polarization, and enhanced level of pro-inflammatory cytokines, oxidative stress and reactive oxygen species (ROS), while this enhancement was abolished by the suppression of KDM4A. CONCLUSION: Accordingly, our findings indicated that KDM4A was upregulated in response to TBI + HS and microglia were among the cell types showing the increased level of KDM4A. The important role of KDM4A in TBI + HS-induced inflammatory response and oxidative stress was at least partially realized through regulating microglia M1 polarization.


Assuntos
Lesões Encefálicas Traumáticas , Histona Desmetilases , Microglia , Estresse Oxidativo , Choque Hemorrágico , Animais , Masculino , Camundongos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa , Histona Desmetilases/metabolismo
13.
Am J Transl Res ; 14(10): 6964-6977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398260

RESUMO

BACKGROUND: DNA methylation controls the transcription of genes and is involved in the development of lung cancer. Our preliminary bioinformatics prediction revealed that sperm associated antigen 6 (SPAG6) was considerably hypermethylated in lung squamous cell carcinoma (LUSC). Thus, this study aimed to probe the mechanism underlying its hypermethylation. METHODS: The effect of DNA methylation of SPAG6 on its expression in LUSC was analyzed. The contributors to SPAG6 DNA hypermethylation were sought. CCK-8, EdU, and Transwell assays were carried out to assess the malignant phenotype of LUSC cells. KEGG pathway enrichment analysis was used to screen for pathways affected by SPAG6, which were confirmed by dual-luciferase assays. Bioinformatics analysis was conducted to dissect the impact of SPAG6 on the immune response and cancer cell stemness in LUSC. RESULTS: DNA methyltransferase 3b (DNMT3b)-mediated hypermethylation of the SPAG6 promoter in LUSC led to SPAG6 downregulation. SPAG6 reverted the malignant phenotype of LUSC cells. SPAG6 regulated the JAK/STAT pathway by inhibiting the transcription of STAT1 and STAT3. The expression of SPAG6 was positively related to immune infiltration in LUSC and inversely related to the expressions of the immunosuppressive genes CTLA4 and PDCD1. SPAG6 expression was negatively correlated with cancer cell stemness in LUSC, and its expression inhibited the expressions of Nanog, ALDH1, and Sox2, markers of cancer cell stemness. CONCLUSIONS: DNMT3b-mediated SPAG6 promoter hypermethylation activates the JAK/STAT pathway to promote LUSC progression.

14.
J Microbiol Biotechnol ; 32(10): 1344-1354, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36224753

RESUMO

Laryngeal cancer is one of the highest incidence, most prevalently diagnosed head and neck cancers, making it critically necessary to probe effective targets for laryngeal cancer treatment. Here, real-time quantitative reverse transcription PCR (qRT-PCR) and western blot analysis were used to detect gene expression levels in laryngeal cancer cell lines. Fluorescence in situ hybridization (FISH) and subcellular fractionation assays were used to detect the subcellular location. Functional assays encompassing Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), transwell and wound healing assays were performed to examine the effects of target genes on cell proliferation and migration in laryngeal cancer. The in vivo effects were proved by animal experiments. RNA-binding protein immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays were used to investigate the underlying regulatory mechanisms. The results showed that KIF26B antisense RNA 1 (KIF26B-AS1) propels cell proliferation and migration in laryngeal cancer and regulates the toll-like receptor 4 (TLR4) signaling pathway. KIF26B-AS1 also recruits FUS to stabilize TLR4 mRNA, consequently activating the TLR4 signaling pathway. Furthermore, KIF26B-AS1 plays an oncogenic role in laryngeal cancer via upregulating TLR4 expression as well as the FUS/TLR4 pathway axis, findings which offer novel insight for targeted therapies in the treatment of laryngeal cancer patients.


Assuntos
Neoplasias Laríngeas , MicroRNAs , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptor 4 Toll-Like/genética , MicroRNAs/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Proliferação de Células/genética , Transdução de Sinais , Movimento Celular/genética
15.
J Clin Lab Anal ; 36(11): e24662, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36181310

RESUMO

BACKGROUND: GRAP2 is an adaptor protein involved in leukocyte signal activation; however, the prognostic value of GRAP2 and its correlation with immune infiltration in lung adenocarcinoma (LUAD) are unclear. METHODS: Original data were downloaded from the TCGA database and Gene Expression Omnibus (GEO) database. GRAP2 expression was analyzed with the TCGA and TIMER databases. We evaluated the influence of GRAP2 on clinical prognosis using the Kaplan-Meier plotter, GEO, and GEPIA database. The TIMER and TISIDB databases were used to investigate correlations between GRAP2 expression and cancer immune characteristics. Finally, we confirmed the expression of GRAP2 in LUAD by immunohistochemistry staining. RESULTS: The transcription levels of GRAP2 were significantly lower in several human cancer types, including LUAD, than in adjacent normal tissues. Immunohistochemistry staining confirmed that LUAD tumor tissues had lower GRAP2 protein expression levels than adjacent normal tissues. GRAP2 downregulation was associated with poorer overall survival, pathologic stage, T stage, N stage, and primary therapy outcome in LUAD. Mechanistically, we found a hub gene set that included a total of 91 genes coexpressed with GRAP2, which were closely related to the immune response in LUAD. The expression levels of GRAP2 were positively correlated with the infiltration levels of multiple immune cells and the cumulative survival time of a few immune cells. GRAP2 expression was found to be positively correlated with that of multiple immune markers, chemokines, chemokine receptors, and MHC molecules in LUAD. CONCLUSIONS: GRAP2 can be used as a biomarker for assessing prognosis and immune infiltration levels in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Neoplasias Pulmonares/patologia , Regulação Neoplásica da Expressão Gênica , Adenocarcinoma de Pulmão/patologia , Biomarcadores
16.
Oxid Med Cell Longev ; 2022: 5074153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164393

RESUMO

Hemorrhagic shock (HS) triggers tissue hypoxia and organ failure during severe blood loss, and the liver is sensitive to HS. Mitogen-activated protein kinase kinase 4 (MKK4) activates the c-Jun NH2-terminal kinase (JNK) pathway, and its expression is upregulated in the serum of HS patients and mouse livers at 1 h post-HS. However, the function of MKK4 in HS-induced liver injury is unclear. The role of MKK4 was investigated in vivo using rat models of HS. Before HS, lentivirus harboring shRNA against MKK4 was injected into rats via the tail vein to knock down MKK4 expression. HS was induced by bloodletting via intubation of the femoral artery followed by resuscitation. The results showed that MKK4 knockdown reduced HS-induced apoptosis in the liver by decreasing Bax expression and the cleavage of caspase 3 and promoting Bcl-2 expression. Moreover, the generation of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) in the liver was promoted, while superoxide dismutase (SOD) activity was inhibited by HS. However, the effect of HS on oxidative stress was abrogated by MKK4 knockdown. Furthermore, MKK4 knockdown restored MMP and complex I and complex III activities and promoted ATP production, suggesting that HS-induced mitochondrial dysfunction in the liver was ameliorated by MKK4 knockdown. The inhibitory effect of MKK4 knockdown on the phosphorylation and activation of the JNK/c-Jun pathway was confirmed. Overall, MKK4 knockdown may suppress oxidative stress and subsequent apoptosis and improve mitochondrial function in the liver upon HS by inhibiting the JNK pathway. The MKK4/JNK axis was shown to be a therapeutic target for HS-induced liver injury in this study.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , Falência Hepática Aguda , MAP Quinase Quinase 4 , Choque Hemorrágico , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Falência Hepática Aguda/etiologia , Falência Hepática Aguda/genética , MAP Quinase Quinase 4/genética , Sistema de Sinalização das MAP Quinases , Malondialdeído , Camundongos , RNA Interferente Pequeno/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Choque Hemorrágico/complicações , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
Plant Sci ; 319: 111252, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35487660

RESUMO

Zrt and Irt-like proteins (ZIPs) are responsible for transporting various divalent metal cations. However, information about the characteristics of the cellular and physiological tolerance of plant ZIPs to Cd stress is still limited. The expression levels of SmZIP8 in Salix matsudana Koidz were upregulated by Cd stress. The complete length of SmZIP8 from S. matsudana was cloned, and transgenic tobacco was obtained by Agrobacterium-mediated transformation. Then, the tolerance to Cd stress of wild-type (WT) and transgenic tobacco seedlings was analyzed and compared by studying the cytotoxicity of the root tip cells, photosynthetic parameters, histochemical staining of O2- and H2O2, the activities of antioxidant enzymes, and malondialdehyde content under Cd stress. In comparison with WT tobacco, the ectopic expression of SmZIP8 in tobacco promoted the cytological tolerance of the transgenic tobacco to Cd stress by reducing cell damage, raising the mitotic indexes, and reducing the rate of chromosome aberration of the root cells. Meanwhile, the results of increased photosynthetic capacity, decreased oxidative damage, and activated antioxidant enzymes showed that the physiological tolerance of transgenic tobacco to Cd was enhanced. The principal component analysis for the above physiological parameters explained 96.08% of the total variance (PC1, 77.77%; PC2, 18.31%), indicating a significant difference in Cd tolerance abilities between the tobacco expressing SmZIP8 and WT tobacco. Therefore, SmZIP8 may be considered as an important genetic resource for the phytoremediation of Cd or other heavy metal pollution via the use of transgenic plants obtained through genetic transformation.


Assuntos
Cádmio , Nicotiana , Antioxidantes/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Expressão Ectópica do Gene , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Nicotiana/metabolismo
18.
Front Oncol ; 11: 752642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912709

RESUMO

BACKGROUND: Glucose-6-phosphate isomerase (GPI) plays an important role in glycolysis and gluconeogenesis. However, the role of GPI in lung adenocarcinoma (LUAD) remains unclear. METHODS: All original data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and integrated via R 3.2.2. GPI expression was explored with TCGA, GEO, and Oncomine databases. Immunohistochemistry staining was used to analyze GPI expression in clinical specimens. The correlations between GPI and cancer immune characteristics were analyzed via the TIMER and TISIDB databases. GPI-specific siRNAs were used to verify the role of GPI expression on cell proliferation and cell cycle distribution. RESULTS: In general, GPI is predominantly overexpressed and has reference value in the diagnosis and prognostic estimation of LUAD. Upregulated GPI was associated with poorer overall survival, clinical stage, N stage, and primary therapy outcome in LUAD. Mechanistically, we identified a hub gene that included a total of 56 GPI-related genes, which were tightly associated with the cell cycle pathway in LUAD patients. Knockdown of GPI induced cell proliferation inhibition and cell cycle arrest. GPI expression was positively correlated with infiltrating levels of Th2 cells and regulatory T cells (Tregs); in contrast, GPI expression was negatively correlated with infiltrating levels of CD8+ T cells, central memory T cells, dendritic cells, macrophages, mast cells, and eosinophils. GPI was negatively correlated with the expression of immunostimulators, such as CD40L, IL6R, and TMEM173, in LUAD. CONCLUSION: GPI may play an important role in the cell cycle and can be used as a prognostic biomarker for determining the prognosis and immune infiltration in LUAD.

19.
Toxins (Basel) ; 13(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34564600

RESUMO

Patulin (PAT) belongs to the family of food-borne mycotoxins. Our previous studies revealed that PAT caused cytotoxicity in human embryonic kidney cells (HEK293). In the present research, we systematically explored the detailed mechanism of ROS production and ROS clearance in PAT-induced HEK293 cell apoptosis. Results showed that PAT treatment (2.5, 5, 7.5, 10 µM) for 10 h could regulate the expression of genes and proteins involved in the mitochondrial respiratory chain complex, resulting in dysfunction of mitochondrial oxidative phosphorylation and induction of ROS overproduction. We further investigated the role of N-acetylcysteine (NAC), an ROS scavenger, in promoting the survival of PAT-treated HEK293 cells. NAC improves PAT-induced apoptosis of HEK293 cells by clearing excess ROS, modulating the expression of mitochondrial respiratory chain complex genes and proteins, and maintaining normal mitochondrial function. In addition, NAC protects the activity of antioxidant enzymes, maintains normal GSH content, and relieves oxidative damage. Additionally, 4 mM NAC alleviated 7.5 µM PAT-mediated apoptosis through the caspase pathway in HEK293 cells. In summary, our study demonstrated that ROS is significant in PAT-mediated cytotoxicity, which provides valuable insight into the management of PAT-associated health issues.


Assuntos
Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Patulina/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas/efeitos dos fármacos , Células HEK293/efeitos dos fármacos , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Micotoxinas/toxicidade
20.
Aging (Albany NY) ; 13(13): 17328-17336, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34198263

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have recently emerged as a new class of RNAs, highly enriched in the human tissues and very stable within cells, exosomes and body fluids. In this study, we aimed to screen the plasma cell-free derived circRNAs in laryngeal squamous cell carcinoma (LSCC) and investigate whether these circRNAs could predicted LSCC as potential biomarkers. METHODS: The circRNA microarray was employed with three samples in each group to screen the dysregulated circRNAs isolated from plasma samples. The top 20 circRNAs were first selected as candidates with the upregulated level in the plasma of LSCC. RESULTS: Further validation found that only circ_0019201, circ_0011773 and circ_0122790 was consistent with training set. The ROC curve also revealed a high diagnostic ability an area under ROC curve value (AUC) for single circRNA and combined. The AUC for circ_0019201, circ_0011773 and circ_0122790 and the combined was 0.933, 0.908, 0.965 and 0.990 in training set. For the validation set, the AUC was 0.766, 0.864, 0.908 and 0.951. The three circRNAs were further investigated with stable expression in human plasma samples. CONCLUSIONS: The plasma derived circ_0019201, circ_0011773 and circ_0122790 might be the potential biomarker for predicting the LSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Impressões Digitais de DNA/métodos , Neoplasias Laríngeas/genética , RNA Circular/genética , Adulto , Idoso , Biomarcadores Tumorais , Estudos de Casos e Controles , Ácidos Nucleicos Livres , Feminino , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Valor Preditivo dos Testes , Curva ROC , Reprodutibilidade dos Testes , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA