RESUMO
BACKGROUND: The occurrence of Colorectal Cancer (CRC) is influenced by various factors, including host susceptibility, immune imbalance, and environmental triggers. Numerous studies have underscored the critical role of chronic intestinal inflammation and dysbiosis in the development of CRC. Traditional Chinese Medicine (TCM) holds unique advantages in regulating the intricate process of and comprehensive treatment for systemic disease. Previous investigations by our team have confirmed the anti-cancer properties of the TCM compound ChanLingGao (CLG), including inhibiting cancer cell migration, and alleviating bone cancer pain. However, the mechanisms underlying its efficacy in alleviating chronic intestinal inflammation, modulating the gut microbiota, and protecting the intestinal mucosal barrier remain largely unknown. PURPOSE: This study aims to explore the inhibitory effects of CLG on CRC tumors in mice and its potential mechanisms. METHODS: A chronic inflammation-related CRC mouse model was established using AOM/DSS. The study examined the mechanisms of intestinal inflammation and tumor cell proliferation through intestinal histological morphology. High-throughput sequencing was employed to analyze changes in gut microbiota diversity and intestinal mucosal barrier integrity in CRC mice. Based on network pharmacology target prediction and Wnt/ß-catenin signaling pathway analysis, the study analyzed and discussed the potential mechanisms of CLG on CRC. RESULTS: CLG significantly ameliorated weight loss and increased survival rates in CRC mice, while suppressing tumor growth in the intestinal tract. Post-CLG treatment improved intestinal inflammation in CRC mice, with a significant reduction in inflammatory factors IL-6, IL-23 and LCN2, and inhibition of tumor cell proliferation markers Proliferating Cell Nuclear Antigen (PCNA), Recombinant Ki-67 Protein (Ki-67), and CCND1. 16sV3-V4 region microbiota sequencing results indicated that CLG improved dysbiosis, and significantly increased the abundance of Akkermansia bacteria, further promoting the expression of MUC-2 protein and mucin secretion. Additionally, CLG prevented the disruption of intestinal epithelial cell junction proteins Occludin, Claudin-1, ZO-1, and E-cadherin, restored the number of goblet cells, and preserved the integrity of the intestinal mucosal barrier. Further experiments suggested that CLG inhibited abnormal activation of the Wnt/ß-catenin pathway, and its potential mechanism in maintaining mucosal barrier integrity might be related to blocking Wnt/ß-catenin pathway. CONCLUSIONS: This study demonstrates that CLG can inhibit CRC tumor growth by regulating the gut microbiota structure, reducing intestinal inflammation, improving intestinal mucosal barrier function, and inhibiting the complex process of cancer cell proliferation. This provides new clinical insights into the "membrane-oriented" treatment of CRC with CLG.
Assuntos
Neoplasias Colorretais , Sulfato de Dextrana , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Mucosa Intestinal , Animais , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Via de Sinalização Wnt/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Azoximetano/toxicidade , Humanos , Proliferação de Células/efeitos dos fármacos , Progressão da DoençaRESUMO
Rationale Obesity is an independent risk factor for the occurrence and development of tumors. Obesity is influenced by signaling of adipokines, which are secreted factors from adipocytes and resident immune cells within adipose tissues that mediate lipid metabolism. More recently, adipokines have been implicated in chronic inflammation as well as in tumor formation and growth. Among them, resistin has received increasing attention in research related to the growth and expansion of solid tumors and hematological cancers through various signaling pathways. Objective and findings We reviewed the physiological, biochemical, and immune functions of adipose tissue, with a focus on the structure and expression of resistin and adipokines within multiple adipose cell types, their signaling pathways and putative effects on tumor cells, as well as their in vivo regulation. Current evidence indicates that adipokines such as resistin act as pro-inflammatory factors to stimulate immune cells which, in turn, promotes tumor angiogenesis, connective tissue proliferation, and matrix fibrosis. Concurrently, in states of metabolic dysfunction and lipotoxicity in obese individuals, the numbers and functions of immune cells are compromised, leading to an immunosuppressive environment that fosters tumor cell survival and weak cancer immune monitoring. Conclusion Adipokines such as resistin are important to the development of obesity-related tumors. Clarifying the roles for obesity-related factors in immune regulation and tumor progression may lead to the discovery of novel anti-tumor strategies for targeting obesity factors such as resistin to limit tumor growth and manage obesity, or both.
Assuntos
Adipocinas , Tecido Adiposo , Neoplasias , Obesidade , Resistina , Humanos , Obesidade/imunologia , Obesidade/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Resistina/metabolismo , Adipocinas/metabolismo , Adipocinas/imunologia , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Transdução de Sinais/imunologiaRESUMO
Various infections trigger a storm of proinflammatory cytokines in which IL-6 acts as a major contributor and leads to diffuse alveolar damage in patients. However, the metabolic regulatory mechanisms of IL-6 in lung injury remain unclear. Polyriboinosinic-polyribocytidylic acid [poly(I:C)] activates pattern recognition receptors involved in viral sensing and is widely used in alternative animal models of RNA virus-infected lung injury. In this study, intratracheal instillation of poly(I:C) with or without an IL-6-neutralizing antibody model was combined with metabonomics, transcriptomics, and so forth to explore the underlying molecular mechanisms of IL-6-exacerbated lung injury. We found that poly(I:C) increased the IL-6 concentration, and the upregulated IL-6 further induced lung ferroptosis, especially in alveolar epithelial type II cells. Meanwhile, lung regeneration was impaired. Mechanistically, metabolomic analysis showed that poly(I:C) significantly decreased glycolytic metabolites and increased bile acid intermediate metabolites that inhibited the bile acid nuclear receptor farnesoid X receptor (FXR), which could be reversed by IL-6-neutralizing antibody. In the ferroptosis microenvironment, IL-6 receptor monoclonal antibody tocilizumab increased FXR expression and subsequently increased the Yes-associated protein (YAP) concentration by enhancing PKM2 in A549 cells. FXR agonist GW4064 and liquiritin, a potential natural herbal ingredient as an FXR regulator, significantly attenuated lung tissue inflammation and ferroptosis while promoting pulmonary regeneration. Together, the findings of the present study provide the evidence that IL-6 promotes ferroptosis and impairs regeneration of alveolar epithelial type II cells during poly(I:C)-induced murine lung injury by regulating the FXR-PKM2-YAP axis. Targeting FXR represents a promising therapeutic strategy for IL-6-associated inflammatory lung injury.
Assuntos
Ferroptose , Interleucina-6 , Pulmão , Poli I-C , Receptores Citoplasmáticos e Nucleares , Ferroptose/efeitos dos fármacos , Animais , Poli I-C/farmacologia , Interleucina-6/metabolismo , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/tratamento farmacológico , Humanos , Transdução de Sinais/efeitos dos fármacosRESUMO
The Chinese medicine formula Chanling Gao (CLG) exhibits significant tumor inhibitory effects in colorectal cancer (CRC) nude mice. However, the detailed mechanisms remain elusive. CRC in situ nude mouse models were treated with CLG. Small animal magnetic resonance imaging (MRI) tracked tumor progression, and overall health metrics such as food and water intake, body weight, and survival were monitored. Posttreatment, tissues and blood were analyzed for indicators of tumor inhibition and systemic effects. Changes in vital organs were observed via stereoscope and hematoxylin-eosin staining. Immunohistochemistry quantified HIF-1α and P70S6K1 protein expression in xenografts. Double labeling was used to statistically analyze vascular endothelial growth factor (VEGF) and CD31 neovascularization. Enzyme-linked immunosorbent assay was used to determine the levels of VEGF, MMP-2, MMP-9, IL-6, and IL-10 in serum, tumors, and liver. Western blotting was used to assess the expression of the PI3K/Akt/mTOR signaling pathway-related factors TGF-ß1 and smad4 in liver tissues. CLG inhibited tumor growth, improved overall health metrics, and ameliorated abnormal blood cell counts in CRC nude mice. CLG significantly reduced tumor neovascularization and VEGF expression in tumors and blood. It also suppressed HIF-1α, EGFR, p-PI3K, Akt, p-Akt, and p-mTOR expression in tumors while enhancing PTEN oncogene expression. Systemic improvements were noted, with CLG limiting liver metastasis, reducing pro-inflammatory cytokines IL-6 and IL-10 in liver tissues, decreasing MMP-2 in blood and MMP-2 and MMP-9 in tumors, and inhibiting TGF-ß1 expression in liver tissues. CLG can enhance survival quality and inhibit tumor growth in CRC nude mice, likely through the regulation of the PI3K/Akt/mTOR signaling pathway.
Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta1 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Nus , Interleucina-10 , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Interleucina-6 , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Colorretais/metabolismo , Linhagem Celular TumoralRESUMO
Sorafenib, a multi-targeted tyrosine kinase inhibitor, is a first-line treatment for advanced solid tumors, but it induces many adverse cardiovascular events, including myocardial infarction and heart failure. These cardiac defects can be mediated by alternative splicing of genes critical for heart function. Whether alternative splicing plays a role in sorafenib-induced cardiotoxicity remains unclear. Transcriptome of rat hearts or human cardiomyocytes treated with sorafenib was analyzed and validated to define alternatively spliced genes and their impact on cardiotoxicity. In rats, sorafenib caused severe cardiotoxicity with decreased left ventricular systolic pressure, elongated sarcomere, enlarged mitochondria and decreased ATP. This was associated with alternative splicing of hundreds of genes in the hearts, many of which were targets of a cardiac specific splicing factor, RBM20. Sorafenib inhibited RBM20 expression in both rat hearts and human cardiomyocytes. The splicing of RBM20's targets, SLC25A3 and FHOD3, was altered into fetal isoforms with decreased function. Upregulation of RBM20 during sorafenib treatment reversed the pathogenic splicing of SLC25A3 and FHOD3, and enhanced the phosphate transport into mitochondria by SLC25A3, ATP synthesis and cell survival.We envision this regulation may happen in many drug-induced cardiotoxicity, and represent a potential druggable pathway for mitigating sorafenib-induced cardiotoxicity.
Assuntos
Processamento Alternativo , Cardiotoxicidade , Ratos , Animais , Humanos , Sorafenibe , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Sarcômeros/metabolismo , Genes Mitocondriais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Miócitos Cardíacos/metabolismo , Trifosfato de Adenosina/metabolismo , Forminas/genética , Forminas/metabolismoRESUMO
BACKGROUND: Stent implantation has been increasingly applied for the treatment of obstructive coronary artery disease, which, albeit effective, often harasses patients by in-stent restenosis (ISR). PURPOSE: The present study was to explore the role of compound Chinese medicine Cardiotonic Pills® (CP) in attenuating ISR-evoked myocardial injury and fibrosis. STUDY DESIGN: Chinese miniature pigs were used to establish ISR model by implanting obsolete degradable stents into coronary arteries. Quantitative coronary angiography (QCA) was performed to confirm the success of the model. METHODS: CP was given at 0.2 g/kg daily for 30 days after ISR. On day 30 and 60 after stent implantation, the myocardial infarct and myocardial blood flow (MBF) were assessed. Myocardial histology was evaluated by hematoxylin-eosin and Masson's trichrome staining. The content of ATP, MPO, and the activity of mitochondrial respiratory chain complex â £ were determined by ELISA. Western blot was performed to assess the expression of ATP5D and related signaling proteins, and the mediators of myocardial fibrosis. RESULTS: Treatment with CP diminished myocardial infarct size, retained myocardium structure, attenuated myocardial fibrosis, and restored MBF. CP ameliorated energy metabolism disorder, attenuated TGFß1 up-regulation and reversed its downstream gene expression, such as Smad6 and Smad7, and inhibited the increased expression of MCP-1, PR S19, MMP-2 and MMP-9. CONCLUSION: CP effectively protects myocardial structure and function from ISR challenge, possibly by regulating energy metabolism via inactivation of RhoA/ROCK signaling pathway and inhibition of monocyte chemotaxis and TGF ß1/Smads signaling pathway.
Assuntos
Reestenose Coronária , Infarto do Miocárdio , Trifosfato de Adenosina , Animais , Cardiotônicos/farmacologia , Reestenose Coronária/tratamento farmacológico , Reestenose Coronária/etiologia , Reestenose Coronária/prevenção & controle , Amarelo de Eosina-(YS) , Fibrose , Hematoxilina , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Infarto do Miocárdio/tratamento farmacológico , Suínos , Porco Miniatura/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
BACKGROUND: Myocardial ischemia-reperfusion (I/R) causes damage to coronary capillary endothelial barrier and microvascular leakage (MVL), aggravating tissue injury and heart dysfunction. However, the effective strategy for protecting endothelium barrier of cardiac vasculature remains limited. PURPOSE: This study aimed to explore the effect of Astragaloside IV (ASIV) on coronary MVL after cardiac I/R and the underlying mechanism. STUDY DESIGN: Sprague-Dawley (SD) rats were used for assessment of the efficacy of Astragaloside IV in protection of myocardial I/R injury, while human cardiac microvascular endothelial cells were applied to gain more insight into the underlying mechanism. METHODS: Sprague-Dawley rats with or without pretreatment by ASIV at 10 mg/kg were subjected to occlusion of left coronary anterior descending artery followed by reperfusion. Endothelial cells were exposed to hypoxia and re-oxygenation (H/R). The distribution of junction proteins was detected by immunofluorescence staining and confocal microscope, the content of junction proteins was detected by Western blot, the level of adenosine triphosphate (ATP) was detected by ELISA, and the signal pathway related to permeability was detected by siRNA infection. The fluorescence intensity of FITC-albumin and FITC-Dextran was measured to evaluate the permeability of endothelial cells. RESULTS: ASIV exhibited protective effects on capillary damage, myocardium edema, albumin leakage, leucocyte infiltration, and the downregulated expression of endothelial junction proteins after I/R. Moreover, ASIV displayed ability to protect ATP from depletion after I/R or H/R, and the effect of ASIV on regulating vascular permeability and junction proteins was abolished once ATP synthase was inhibited. Notably, ASIV activated the insulin-like growth factor 1 receptor (IGF1R) and downstream signaling after reoxygenation. Knocking IGF1R down abolished the effect of ASIV on restoration of ATP, junction proteins and endothelial barrier after H/R. CONCLUSION: ASIV was potential to prevent MVL after I/R in heart. Moreover, the study for the first time demonstrated that the beneficial role of ASIV depended on promoting production of ATP through activating IGF1R signaling pathway. This result provided novel insight for better understanding the mechanism underlying the potential of ASIV to cope with cardiac I/R injury.
Assuntos
Traumatismo por Reperfusão Miocárdica , Saponinas , Triterpenos , Trifosfato de Adenosina/farmacologia , Animais , Células Endoteliais , Endotélio , Isquemia/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Reperfusão , Saponinas/farmacologia , Saponinas/uso terapêutico , Transdução de Sinais , Triterpenos/farmacologia , Triterpenos/uso terapêuticoRESUMO
AIM: This study investigated the roles of bone morphogenetic protein-4 (BMP4) and ROS in diabetic endothelial dysfunction and explored whether Salvianolic acid B (Sal B) improved endothelial function by affecting BMP4-ROS in diabetic mice. MAIN METHODS: db/db mice were orally administrated with Sal B (10 mg/kg/day) for one week while db/m + mice were injected with adenoviral vectors delivering BMP4 (3 × 108 pfu) and then received one week-Sal B treatment. ROS levels were assayed by DHE staining. Protein expression and phosphorylation were evaluated by Western blot. Aortic rings were suspended in myograph for force measurement. Flow-mediated dilatations in the second-order mesenteric arteries were determined by pressure myograph. KEY FINDINGS: We first revealed the existence of a BMP4-ROS cycle in db/db mice, which stimulated p38 MAPK/JNK/caspase 3 and thus participated in endothelial dysfunction. One week-treatment or 24 h-incubation with Sal B disrupted the cycle, suppressed p38 MAPK/JNK/caspase 3 cascade, and improved endothelium-dependent relaxations (EDRs) in db/db mouse aortas. Importantly, in vivo Sal B treatment also improved flow-mediated dilatation in db/db mouse second order mesenteric arteries. Furthermore, in vivo BMP4 overexpression induced oxidative stress, stimulated p38 MAPK/JNK/caspase 3, and impaired EDRs in db/m + mouse aortas, which were all reversed by Sal B. SIGNIFICANCE: The present study demonstrates that Sal B ameliorates endothelial dysfunction through breaking the BMP4-ROS cycle and subsequently inhibiting p38 MAPK/JNK/caspase 3 in diabetic mice and provides evidence for the additional new mechanism underlying the benefit of Sal B against diabetic vasculopathy.
Assuntos
Benzofuranos/farmacologia , Proteína Morfogenética Óssea 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Aorta/metabolismo , Benzofuranos/metabolismo , Proteína Morfogenética Óssea 4/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Caspase 3/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Artérias Mesentéricas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Doenças Vasculares/metabolismo , Vasodilatação/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
AIM: 3,4-Dihydroxyl-phenyl lactic acid (DLA) and notoginsenoside R1 (R1) are known to protect ischemia and reperfusion (I/R) injury by targeting Sirtuin1/NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 10/the Mitochondrial Complex I (Sirt-1/NDUFA10/Complex I) and Rho-associated kinase/adenosine triphosphate (ROCK/ATP) ATP synthase δ subunit (ATP 5D), respectively. We hypothesized that a composite of the two may exhibit a more potent effect on I/R injury. The study was designed to test this hypothesis. MATERIALS AND METHODS: Male Sprague-Dawley rats underwent left anterior descending artery occlusion and reperfusion, with or without DLA, R1, or a combination of 3,4-dihydroxyl-phenyl lactic acid and notoginsenoside R1 (DR) pretreatment. Heart function, myocardial morphology, myocardial infarct, myocardial blood flow (MBF), apoptosis, vascular diameter, and red blood cell (RBC) velocity in venules were evaluated. Myeloperoxidase (MPO), malondialdehyde (MDA), and 8-oxo-deoxyguanosine (8-OHdG) were assessed. The content of ATP, adenosine diphosphate (ADP), and adenosine monophosphate (AMP), the activity of mitochondrial respiratory chain Complex I and its subunit NDUFA10, the Mitochondrial Complex V (Complex V) and its subunit ATP 5D, Sirt-1, Ras homolog gene family, member A (RhoA), ROCK-1, and phosphorylated myosin light chain (P-MLC) were evaluated. R1 binding to Sirt-1 was determined by surface plasmon resonance. RESULTS: DLA inhibited the expression of Sirt-1, the reduction in Complex I activity and its subunit NDUFA10 expression, the increase in MPO, MDA, and 8-OhdG, and apoptosis. R1 inhibited the increase in the expression of RhoA/ROCK-1/P-MLC, the reduction of Complex V activity and its subunit ATP 5D expression, alleviated F-actin, and myocardial fiber rupture. Both DLA and R1 reduced the myocardial infarction size, increased the velocities of RBC in venules, and improved MBF and heart function impaired by I/R. DR exhibited effects similar to what was exerted, respectively, by DLA and R1 in terms of respiratory chain complexes and related signaling and outcomes, and an even more potent effect on myocardial infarct size, RBC velocity, heart function, and MBF than DLA and R1 alone. CONCLUSION: A combination of 3,4-dihydroxyl-phenyl lactic acid and notoginsenoside R1 revealed a more potent effect on I/R injury via the additive effect of DLA and R1, which inhibited not only apoptosis caused by low expression of Sirt-1/NDUFA10/Complex I but also myocardial fiber fracture caused by RhoA/ROCK-1 activation and decreased expression of ATP/ATP 5D/Complex V.
RESUMO
Drugs that induce thrombosis in the tumour vasculature have not resulted in long-term tumour eradication owing to tumour regrowth from tissue in the surviving rim of the tumour, where tumour cells can derive nutrients from adjacent non-tumoral blood vessels and tissues. Here, we report the performance of a combination of tumour-infarction therapy and chemotherapy, delivered via chitosan-based nanoparticles decorated with a tumour-homing peptide targeting fibrin-fibronectin complexes overexpressed on tumour-vessel walls and in tumour stroma, and encapsulating the coagulation-inducing protease thrombin and the chemotherapeutic doxorubicin. Systemic administration of the nanoparticles into mice and rabbits bearing subcutaneous or orthotopic tumours resulted in higher tumour growth suppression and decreased tumour recurrence than nanoparticles delivering only thrombin or doxorubicin, with histological and haematological analyses indicating an absence of detectable toxicity. The co-administration of a cytotoxic payload and a protease to elicit vascular infarction in tumours with biodegradable tumour-targeted nanoparticles represents a promising strategy for improving the therapeutic index of coagulation-based tumour therapy.
Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Tratamento Farmacológico/métodos , Infarto/tratamento farmacológico , Nanopartículas/química , Trombina/administração & dosagem , Animais , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/química , Feminino , Neoplasias Hepáticas , Melanoma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Coelhos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
OBJECTIVE: To investigate the effects of Bushen Tiaoxue Granules and Kunling Wan, the two Chinese medicines, on vascular dysfunction and the impairment of endometrial receptivity caused by controlled ovarian hyperstimulation and its underlying mechanism. METHODS: Female Sprague Dawley rats with regular estrous cycle were enrolled and given Bushen Tiaoxue Granules or Kunling Wan by gavage for 12 days, and then, controlled ovarian hyperstimulation model was induced. We assessed endometrial microvessels, endometrial blood flow, levels of estradiol and progesterone in serum, vascular endothelial growth factor A upstream molecules estrogen and progesterone receptors in the endometrium, and pregnancy outcome. RESULTS: Pre-treatment of Bushen Tiaoxue Granules or Kunling Wan increases endometrial blood flow of controlled ovarian hyperstimulation rats, up-regulates vascular endothelial growth factor A and microvessels, improves the endometrial morphology of controlled ovarian hyperstimulation rats during implantation, decreases the super physiological concentration of estradiol and progesterone in serum, and increases the expression of vascular endothelial growth factor A upstream molecules estrogen and progesterone receptors in the endometrium. In addition, Bushen Tiaoxue Granules or Kunling Wan elevates the lysophosphatidic acid receptor 3 that participates in vascularization and increases the expression of leukemia inhibitory factor through up-regulating the expression of p53 in the endometrium, ultimately affecting pregnancy outcome. CONCLUSION: This study demonstrated Bushen Tiaoxue Granules or Kunling Wan as a potential strategy for prevention of impairment in angiogenesis and endometrial receptivity induced by controlled ovarian hyperstimulation.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Implantação do Embrião/efeitos dos fármacos , Endométrio/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Indução da Ovulação , Animais , Feminino , Gravidez , Ratos , Ratos Sprague-DawleyRESUMO
QiShenYiQi Pills (QSYQ) is a compound Chinese medicine widely used in China for treatment of cardiovascular disease. However, limited data are available regarding the anti-fibrotic role of QSYQ after ischemia/reperfusion (I/R) injury. This study aimed to investigate the effect of post-treatment with QSYQ on myocardial fibrosis after I/R-induced myocardium injury, and the role of different compounds of QSYQ, focusing especially on the involvement of chemokine ribosomal protein S19 (RP S19) dimer and monocyte migration. Male Sprague-Dawley rats were subjected to left anterior descending coronary artery occlusion for 30 min followed by reperfusion with or without administration of QSYQ (0.6, 1.2, or 1.8 g/kg) once daily by gavage for 6 days. Post-treatment with QSYQ diminished I/R-induced infarct size, alleviated myocardium injury, attenuated myocardial fibrosis after 6 days of reperfusion, and restored heart function and myocardial blood flow after I/R. In addition, the drug significantly inhibited monocyte infiltration and macrophage polarization towards M2, which was attributable to chemokine RP S19 dimer. Moreover, Western blots revealed that QSYQ blocked I/R-induced increase in TGFß1 and TGFßRâ ¡ and reversed its relevant gene expression, such as Smad3,4,6,7, and inhibited the increase of MMP 2,9 expression. As the major components of QSYQ, astragaloside IV (AsIV), 3,4-dihydroxy-phenyl lactic acid (DLA), and notoginsenoside R1 (R1) were assessed as to the contribution of each of them to the expression of the proteins concerned. The results showed that the effect of AsIV was similar to QSYQ, while DLA and R1 only partly simulated the effect of QSYQ. The results provide evidence for the potential role of QSYQ in treating myocardial fibrosis following I/R injury. This effect may be associated with QSYQ's inhibition effect on monocyte chemotaxis and TGFß1/Smads signaling pathway with different component targeting distinct link (s) of the signaling.
Assuntos
Cardiotônicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Cardiotônicos/farmacologia , Linhagem Celular , Medicamentos de Ervas Chinesas/farmacologia , Fibrose , Macrófagos/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , RNA Interferente Pequeno/genética , Ratos Sprague-Dawley , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
OBJECTIVE: Yiqifumai injection is a compound Chinese medicine used to treat microcirculatory disturbance-related diseases clinically. Our previous study proved that Yiqifumai injection pretreatment inhibited lipopolysaccharide-induced venular albumin leakage in rat mesentery. This study aimed to investigate whether Yiqifumai injection attenuated cerebral microvascular hyperpermeability and corresponding contribution of its main ingredients. METHODS: Rats were challenged by lipopolysaccharide infusion (5 mg/kg/h) for 90 minutes. Yiqifumai injection (160 mg/kg/h), Rb1 (5 mg/kg/h), Sch (2.5 mg/kg/h), and Rb1 (5 mg/kg/h) + Sch (2.5 mg/kg/h) were infused 30 minutes before (pretreatment) or after (post-treatment) lipopolysaccharide administration. RESULTS: Both pretreatment and post-treatment with Yiqifumai injection attenuated cerebral venular albumin leakage during lipopolysaccharide infusion and cerebrovascular hyperpermeability at 72 hours after lipopolysaccharide infusion. Yiqifumai injection restrained the decreased junction protein expression, adenosine triphosphate content, and mitochondria complex I, II, IV, and V activities. Moreover, Yiqifumai injection inhibited toll-like receptor-4 expression, Src phosphorylation, and caveolin-1 expression. Its main ingredients Rb1 and Sch alone worked differently, with Rb1 being more effective for enhancing energy metabolism, while Sch attenuating toll-like receptor-4 expression and Src activation. CONCLUSION: Yiqifumai injection exerts a protective and ameliorated effect on cerebral microvascular hyperpermeability, which is more effective than any of its ingredients, possibly due to the interaction of its main ingredients through a multi-pathway mode.
Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Lipopolissacarídeos/toxicidade , Microcirculação/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos WistarRESUMO
Prolonged exercise and exercise training can adversely affect cardiac function in some individuals. QiShenYiQi Pills (QSYQ), which are a compound Chinese medicine, have been previously shown to improve pressure overload-induced cardiac hypertrophy. We hypothesized that QSYQ can ameliorate as well the fatigue-induced cardiac hypertrophy. This study was to test this hypothesis and underlying mechanism with a focus on its role in energy regulation. Male Sprague-Dawley rats were used to establish exercise adaptation and fatigue model on a motorized rodent treadmill. Echocardiographic analysis and heart function test were performed to assess heart systolic function. Food-intake weight/body weight and heart weight/body weight were assessed, and hematoxylin and eosin staining and immunofluorescence staining of myocardium sections were performed. ATP synthase expression and activity and ATP, ADP, and AMP levels were assessed using Western blot and ELISA. Expression of proteins related to energy metabolism and IGF-1R signaling was determined using Western blot. QSYQ attenuated the food-intake weight/body weight decrease, improved myocardial structure and heart function, and restored the expression and distribution of myocardial connexin 43 after fatigue, concomitant with an increased ATP production and a restoration of metabolism-related protein expression. QSYQ upgraded the expression of IGF-1R, P-AMPK/AMPK, peroxisome proliferator-activated receptor-γ coactivator-1α, nuclear respiratory factor-1, P-phosphatidylinositol 3-kinase (PI3K)/PI3K, and P-Akt/Akt thereby attenuated the dysregulation of IGF-1R signaling after fatigue. QSYQ relieved fatigue-induced cardiac hypertrophy and enhanced heart function, which is correlated with its potential to improve energy metabolism by regulating IGF-1R signaling. NEW & NOTEWORTHY Prolonged exercise may impact some people leading to pathological cardiac hypertrophy. This study using an animal model of fatigue-induced cardiac hypertrophy provides evidence showing the potential of QiShenYiQi Pills, a novel traditional Chinese medicine, to prevent the cardiac adaptive hypertrophy from development to pathological hypertrophy and demonstrates that this effect is correlated with its capacity for regulating energy metabolism through interacting with insulin-like growth factor-1 receptor.
Assuntos
Fármacos Cardiovasculares/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Fadiga/tratamento farmacológico , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Fadiga/complicações , Fadiga/metabolismo , Fadiga/fisiopatologia , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Receptor IGF Tipo 1/metabolismo , Transdução de SinaisRESUMO
This study aimed to explore the efficacy and mechanism of Chanling Gao (CLG), a compound Chinese medicine, on colorectal cancer (CRC). A model of transplanted CRC was established in nude mice. The mice were treated 7 days after CRC transplantation with either Capecitabine or CLG for 3 weeks. On the 28th day after the operation, CRC growth and liver metastasis were assessed by morphology, the changes in the expression of HIF-1α (hypoxia inducible factor-1α), stromal cell-derived factor-1 alpha (SDF-1α), CXCR4 (C-X-C chemokine receptor type 4), PI3K, and Akt in the transplanted tumor and SDF-1α and CXCR4 in the liver were detected by Western blot and immunohistochemistry. The protein contents of vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2, and collagen IV in the serum and transplanted tumor and SDF-1α and CXCR4 in liver tissues were detected by enzyme-linked immunosorbent assay. In the Capecitabine and high dose CLG groups, the growth and liver metastasis of CRC were significantly inhibited, the protein levels of HIF-1α, SDF-1α, CXCR4, MMP-2, VEGF, PI3K, Akt, P-PI3K and P-Akt in the transplanted tumor were lower, while the content of collagen IV in the transplanted tumor was higher, than in Model group. A high dose of CLG inhibited the growth of transplanted tumor and liver metastasis of CRC in nude mice, probably by inhibiting the HIF-1α/SDF-1α-CXCR4/PI3K-Akt signaling pathway reducing the synthesis and release of VEGF and degradation of collagen IV.
Assuntos
Neoplasias Colorretais/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Animais , Antineoplásicos/farmacologia , Western Blotting , Capecitabina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
BACKGROUND: Gualou Xiebai decoction (GLXB), a multi-component herbal formula, has been widely used to treat coronary heart disease (CHD) in China for centuries. Several studies have revealed part of its pharmacological activities, whereas its active compounds and mechanisms of action are still unknown because of its complex composition. PURPOSE: Discover the major active compounds and the pharmacological mechanisms of GLXB by network pharmacology methods. METHODS: The main candidate target network was constructed by predicting targets of absorbable chemical compounds of GLXB, collecting therapeutic targets of cardiovascular drugs, constructing target network and layers of screening. Community detection and edge-betweenness calculation were applied to analyze the main candidate target network. Cell viability test, Western blot and flow cytometry were performed to validate the predicted results in cardiomyocytes hypoxia/reoxygenation model. RESULTS: Five clusters and eight cross-talk targets were found in the main candidate target network. Their functions combined together might explain the multifunctional role of GLXB against CHD. Among the cross-talk targets, ESR1 (Estrogen receptor alpha, ERα) and MAPK14 (Mitogen-activated protein kinase 14, p38) were both drug targets and therapeutic targets whose interaction exhibited the greatest edge-betweenness value, suggesting their crucial role in the protective effect of GLXB. The compounds targeting on ESR1 and MAPK14 were identified as apigenin and 25S-macrostemonoside P respectively which were regard as the major bioactive compounds. The predicted results including the major bioactive compounds, their targets and the synergic effects between them were validated. CONCLUSION: This study screened out major bioactive compounds from GLXB and offered a new understanding of the protection mechanism of GLXB against CHD by network pharmacology method and provides a combination strategy to explore mechanisms of action of multi-component drugs from a holistic perspective.
Assuntos
Doença das Coronárias/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Miócitos Cardíacos/efeitos dos fármacosRESUMO
Background and Purpose- tPA (tissue-type plasminogen activator) is the only recommended intravenous thrombolytic agent for ischemic stroke. However, its application is limited because of increased risk of hemorrhagic transformation beyond the time window. T541 is a Chinese compound medicine with potential to attenuate ischemia and reperfusion injury. This study was to explore whether T541-benefited subjects underwent tPA thrombolysis extending the time window. Methods- Male C57BL/6 N mice were subjected to carotid artery thrombosis by stimulation with 10% FeCl3 followed by 10 mg/kg tPA with/without 20 mg/kg T541 intervention at 4.5 hours. Thrombolysis and cerebral blood flow were observed dynamically until 24 hours after drug treatment. Neurological deficit scores, brain edema and hemorrhage, cerebral microvascular junctions and basement membrane proteins, and energy metabolism in cortex were assessed then. An in vitro hypoxia/reoxygenation model using human cerebral microvascular endothelial cells was used to evaluate effect of T541 on tight junctions and F-actin in the presence of tPA. Results- tPA administered at 4.5 hours after carotid thrombosis resulted in a decrease in thrombus area and survival rate, whereas no benefit on cerebral blood flow. Study at 24 hours after tPA administration revealed a significant angioedema and hemorrhage in the ischemia hemisphere, a decreased expression of junction proteins claudin-5, zonula occludens-1, occludin, junctional adhesion molecule-1 and vascular endothelial cadherin, and collagen IV and laminin. Meanwhile, ADP/ATP, AMP/ATP, and ATP5D (ATP synthase subunit) expression and activities of mitochondria complex I, II, and IV declined, whereas malondialdehyde and 8-Oxo-2'-deoxyguanosine increased and F-actin arrangement disordered. All the insults after tPA treatment were attenuated by addition of T541 dose dependently. Conclusions- The results suggest T541 as a potential remedy to attenuate delayed tPA-related angioedema and hemorrhage and extend time window for tPA treatment. The potential of T541 to upregulate energy metabolism and protect blood-brain barrier is likely attributable to its effects observed.
Assuntos
Alcenos/farmacologia , Edema Encefálico , Trombose das Artérias Carótidas , Circulação Cerebrovascular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Hemorragias Intracranianas , Polifenóis/farmacologia , Traumatismo por Reperfusão , Saponinas/farmacologia , Animais , Antígenos CD/efeitos dos fármacos , Antígenos CD/metabolismo , Astrágalo , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Caderinas/efeitos dos fármacos , Caderinas/metabolismo , Moléculas de Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Claudina-5/efeitos dos fármacos , Claudina-5/metabolismo , Colágeno Tipo IV/efeitos dos fármacos , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Combinação de Medicamentos , Complexo I de Transporte de Elétrons , Complexo II de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons , Laminina/efeitos dos fármacos , Laminina/metabolismo , Masculino , Camundongos , Ocludina/efeitos dos fármacos , Ocludina/metabolismo , Panax notoginseng , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Ativador de Plasminogênio Tecidual/farmacologia , Proteína da Zônula de Oclusão-1/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/metabolismoRESUMO
The transplanted liver inevitably suffers from ischemia reperfusion (I/R) injury, which represents a key issue in clinical transplantation determining early outcome and long-term graft survival. A solution is needed to deal with this insult. This study was undertaken to explore the effect of Caffeic acid (CA), a naturally occurring antioxidant, on I/R injury of grafted liver and the mechanisms involved. Male Sprague-Dawley rats underwent orthotopic liver transplantation (LT) in the absence or presence of CA administration. In vitro, HL7702 cells were subjected to hypoxia/reoxygenation. LT led to apparent hepatic I/R injury, manifested by deteriorated liver function, microcirculatory disturbance and increased apoptosis, along with increased PDIA3 expression and nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase activity, and membrane translocation of NADPH oxidase subunits. Treatment with CA attenuated the above alterations. siRNA/shRNA-mediated knockdown of PDIA3 in HL7702 cells and rats played the same role as CA not only in inhibiting ROS production and NADPH oxidase activity, but also in alleviating hepatocytes injury. CA protects transplanted livers from injury, which is likely attributed to its protection of oxidative damage by interfering in PDIA3-dependent activation of NADPH oxidase.
Assuntos
Antioxidantes/farmacologia , Ácidos Cafeicos/farmacologia , Transplante de Fígado , NADPH Oxidases/genética , Isomerases de Dissulfetos de Proteínas/genética , Traumatismo por Reperfusão/prevenção & controle , Animais , Antioxidantes/isolamento & purificação , Apoptose/efeitos dos fármacos , Ácidos Cafeicos/isolamento & purificação , Hipóxia Celular/genética , Linhagem Celular , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , NADPH Oxidases/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Salvia miltiorrhiza/química , Transdução de Sinais , Transplante HomólogoRESUMO
Nanoscale robots have potential as intelligent drug delivery systems that respond to molecular triggers. Using DNA origami we constructed an autonomous DNA robot programmed to transport payloads and present them specifically in tumors. Our nanorobot is functionalized on the outside with a DNA aptamer that binds nucleolin, a protein specifically expressed on tumor-associated endothelial cells, and the blood coagulation protease thrombin within its inner cavity. The nucleolin-targeting aptamer serves both as a targeting domain and as a molecular trigger for the mechanical opening of the DNA nanorobot. The thrombin inside is thus exposed and activates coagulation at the tumor site. Using tumor-bearing mouse models, we demonstrate that intravenously injected DNA nanorobots deliver thrombin specifically to tumor-associated blood vessels and induce intravascular thrombosis, resulting in tumor necrosis and inhibition of tumor growth. The nanorobot proved safe and immunologically inert in mice and Bama miniature pigs. Our data show that DNA nanorobots represent a promising strategy for precise drug delivery in cancer therapy.
Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Trombina/administração & dosagem , Animais , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/genética , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/patologia , Proliferação de Células/efeitos dos fármacos , DNA/administração & dosagem , DNA/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Humanos , Camundongos , Neoplasias/patologia , Fosfoproteínas/genética , Ligação Proteica , Proteínas de Ligação a RNA/genética , Suínos , Trombina/química , Ensaios Antitumorais Modelo de Xenoenxerto , NucleolinaRESUMO
Chronic stress induces endocrine disturbance, which contributes to the development of polycystic ovary syndrome (PCOS), a condition that remains a challenge for clinicians to cope with. The present study investigated the effect of Xiao-Yao-San (XYS), a traditional Chinese medicine formula used for treatment of gynecological disease, on the chronic stress-induced polycystic ovary and its underlying mechanism. Female Sprague-Dwaley rats underwent a 3 weeks chronic unpredictable mild stress (CUMS) procedure to establish the PCOS model, followed by 4 weeks treatment with XYS (0.505 g/kg or 1.01 g/kg) by gavage. Granulosa cells were exposed to noradrenaline (1 mM) in vitro for 24 h, followed by incubation with or without XYS-treated rat serum for 24 h. Post-treatment with XYS ameliorated CUMS-induced irregular estrous cycles and follicles development abnormalities, decrease of estradiol and progesterone level as well as increase of luteinizing hormone in serum, reduced cystic follicles formation and the apoptosis and autophagy of granulosa cells, attenuated the increase in dopamine beta hydroxylase and c-fos level in locus coeruleus, the noradrenaline level in serum and ovarian tissue, and the expression of beta 2 adrenergic receptor in ovarian tissue. Besides, XYS alleviated the reduction of phosphorylation of ribosomal protein S6 kinase polypeptide I and protein kinase B, as well as the increase of microtubule-associated protein light chain 3-I to microtubule-associated protein light chain 3-II conversion both in vivo and in vitro. This study demonstrated XYS as a potential strategy for CUMS induced polycystic ovary, and suggested that the beneficial role of XYS was correlated with the regulation of the sympathetic nerve activity.