Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 556
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Zhen Ci Yan Jiu ; 49(7): 715-725, 2024 Jul 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39020490

RESUMO

OBJECTIVES: To evaluate the efficacy of acupuncture in treating breast cancer-related lymphedema (BCRL) by using systematic review and Meta analysis method. METHODS: Searching CNKI, Wanfang Data Knowledge Service Platform, VIP Chinese Journal Service Platform, Chinese Biomedical Literature Database, PubMed, Cochrane Library, Embase and Web of Science, the randomized controlled trials (RCTs) literature of acupuncture for BCRL was collected from the establishment of the databases to October 1st, 2023. After data extraction and risk of bias evaluation of the included literature, Meta-analysis was performed using RevMan5.4 software. RESULTS: A total of 14 RCTs with 952 patients were included. The Meta-analysis results showed that compared with comprehensive decongestive therapy (CDT), CDT-associated methods and other interventions of the contro group, acupuncture was able to decrease the circumference of the proximal 10 cm to elbow crease (MD=-1.95, P=0.000 5), reduce the difference in arm circumference (MD=-1.30, P<0.000 01), and increase the effective index (MD=27.47, P<0.000 01;RR=1.23, P=0.000 5);acupuncture improves the range of motion(ROM) scores of shoulder joint in four areas:anteflexion(SMD=0.47, P=0.04), posterior extension (SMD=0.87, P<0.000 01), abduction (SMD=0.48, P=0.03), and adduction (SMD=0.72, P=0.000 5);acupuncture also could alleviate pain and improve visual analog scale (VAS) scores (MD=-1.15, P<0.000 01). No serious adverse reactions were reported in the literatures. CONCLUSIONS: Acupuncture can effectively improve the degree of limb edema and subjective symptoms in BCRL patients.


Assuntos
Terapia por Acupuntura , Linfedema Relacionado a Câncer de Mama , Moxibustão , Humanos , Feminino , Linfedema Relacionado a Câncer de Mama/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias da Mama/terapia , Neoplasias da Mama/complicações , Resultado do Tratamento , Pontos de Acupuntura , Linfedema/terapia
2.
Front Pharmacol ; 15: 1368950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957396

RESUMO

Background: Metabolic imbalance is the common basis of many diseases. As natural isoquinoline alkaloid, berberine (BBR) has shown great promise in regulating glucose and lipids metabolism and treating metabolic disorders. However, the related mechanism still lacks systematic research. Aim: To discuss the role of BBR in the whole body's systemic metabolic regulation and further explore its therapeutic potential and targets. Method: Based on animal and cell experiments, the mechanism of BBR regulating systemic metabolic processes is reviewed. Potential metabolism-related targets were summarized using Therapeutic Target Database (TTD), DrugBank, GeneCards, and cutting-edge literature. Molecular modeling was applied to explore BBR binding to the potential targets. Results: BBR regulates the whole-body metabolic response including digestive, circulatory, immune, endocrine, and motor systems through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), sirtuin (SIRT)1/forkhead box O (FOXO)1/sterol regulatory element-binding protein (SREBP)2, nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1, and other signaling pathways. Through these reactions, BBR exerts hypoglycemic, lipid-regulating, anti-inflammatory, anti-oxidation, and immune regulation. Molecular docking results showed that BBR could regulate metabolism targeting FOXO3, Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (Gpx) 4 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). Evaluating the target clinical effects, we found that BBR has the therapeutic potential of anti-aging, anti-cancer, relieving kidney disease, regulating the nervous system, and alleviating other chronic diseases. Conclusion: This review elucidates the interaction between potential targets and small molecular metabolites by exploring the mechanism of BBR regulating metabolism. That will help pharmacologists to identify new promising metabolites interacting with these targets.

3.
Gut Microbes ; 16(1): 2367342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889450

RESUMO

Alcohol-related liver disease (ALD) is recognized as a global health crisis, contributing to approximately 20% of liver cancer-associated fatalities. Dysbiosis of the gut microbiome is associated with the development of ALD, with the gut microbial metabolite urolithin A (UA) exhibiting a potential for alleviating liver symptoms. However, the protective efficacy of UA against ALD and its underlying mechanism mediated by microbiota remain elusive. In this study, we provide evidence demonstrating that UA effectively ameliorates alcohol-induced metabolic disorders and hepatic endoplasmic reticulum (ER) stress through a specific gut-microbiota-liver axis mediated by major urinary protein 1 (MUP1). Moreover, UA exhibited the potential to restore alcohol-induced dysbiosis of the intestinal microbiota by enriching the abundance of Bacteroides sartorii (B. sartorii), Parabacteroides distasonis (P. distasonis), and Akkermansia muciniphila (A. muciniphila), along with their derived metabolite propionic acid. Partial attenuation of the hepatoprotective effects exerted by UA was observed upon depletion of gut microbiota using antibiotics. Subsequently, a fecal microbiota transplantation (FMT) experiment was conducted to evaluate the microbiota-dependent effects of UA in ALD. FMT derived from mice treated with UA exhibited comparable efficacy to direct UA treatment, as it effectively attenuated ER stress through modulation of MUP1. It was noteworthy that strong associations were observed among the hepatic MUP1, gut microbiome, and metabolome profiles affected by UA. Intriguingly, oral administration of UA-enriched B. sartorii, P. distasonis, and A. muciniphila can enhance propionic acid production to effectively suppress ER stress via MUP1, mimicking UA treatment. Collectively, these findings elucidate the causal mechanism that UA alleviated ALD through the gut-microbiota-liver axis. This unique mechanism sheds light on developing novel microbiome-targeted therapeutic strategies against ALD.


Assuntos
Cumarínicos , Estresse do Retículo Endoplasmático , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Fígado , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Hepatopatias Alcoólicas/microbiologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Masculino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Cumarínicos/farmacologia , Cumarínicos/metabolismo , Disbiose/microbiologia , Humanos , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação
4.
J Cardiothorac Surg ; 19(1): 336, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902753

RESUMO

OBJECTIVE: Pulmonary papillary adenoma is an extremely rare benign tumor. It is derived from type II lung cells and club cells, suggesting that it may originate from stem cells with two-way differentiation. Only one case has been reported with FGFR2-IIIb overexpression. METHODS: Two cases of pulmonary papillary adenoma with available data on clinical features, histological morphology, immunophenotype and molecular characteristics were analyzed. RESULTS: Both tumors were well-circumscribed unencapsulated nodules composed of papillary structures with fibrovascular cores lined by a single layer of cuboidal or columnar epithelium without necrosis, nuclear atypia and mitoses, or invasion. But malignant transformation features include complex branching structures and significantly enlarged, irregular, and crowded malignant cells in one case. Immunohistochemistry showed that the tumor cells were strongly positive for TTF1, NapsinA, EMA and CK7 and negative for CEA and P63, with a low Ki-67 proliferation index. The EGFR somatic mutation exon19:c.2236_2256delinsATC (p.E746_S752delinsI) was found in one case by next-generation sequencing (NGS) technology. CONCLUSION: Pulmonary papillary adenoma is very rare. Virtually all papillary adenomas are clinically silent and discovered incidentally. They are benign tumors, and resection is curative. An EGFR 19 exon deletion mutation in a patient with this tumor type was detected for the first time by NGS, and our results suggest that the malignant transformation of pulmonary papillary adenoma may be mediated by EGFR mutation.


Assuntos
Adenoma , Receptores ErbB , Neoplasias Pulmonares , Mutação , Humanos , Adenoma/genética , Adenoma/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
5.
Microbiol Spectr ; : e0354923, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916335

RESUMO

In recent years, most studies on the gut microbiome have primarily focused on feces samples, leaving the microbial communities in the intestinal mucosa relatively unexplored. To address this gap, our study employed shotgun metagenomics to analyze the microbial compositions in normal rectal mucosa and matched feces from 20 patients with colonic polyps. Our findings revealed a pronounced distinction of the microbial communities between these two sample sets. Compared with feces, the mucosal microbiome contains fewer genera, with Burkholderia being the most discriminating genus between feces and mucosa, highlighting its significant influence on the mucosa. Furthermore, based on the microbial classification and KEGG Orthology (KO) annotation results, we explored the association between rectal mucosal microbiota and factors such as age, gender, BMI, and polyp risk level. Notably, we identified novel biomarkers for these phenotypes, such as Clostridium ramosum and Enterobacter cloacae in age. The mucosal microbiota showed an enrichment of KO pathways related to sugar transport and short chain fatty acid metabolism. Our comprehensive approach not only bridges the knowledge gap regarding the microbial community in the rectal mucosa but also underscores the complexity and specificity of microbial interactions within the human gut, particularly in the Chinese population. IMPORTANCE: This study presents a system-level map of the differences between feces and rectal mucosal microbial communities in samples with colorectal cancer risk. It reveals the unique microecological characteristics of rectal mucosa and its potential influence on health. Additionally, it provides novel insights into the role of the gut microbiome in the pathogenesis of colorectal cancer and paves the way for the development of new prevention and treatment strategies.

6.
BMJ ; 385: e075707, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862179

RESUMO

OBJECTIVE: To assess the effect of different antiplatelet strategies on clinical outcomes after coronary artery bypass grafting. DESIGN: Five year follow-up of randomised Different Antiplatelet Therapy Strategy After Coronary Artery Bypass Grafting (DACAB) trial. SETTING: Six tertiary hospitals in China; enrolment between July 2014 and November 2015; completion of five year follow-up from August 2019 to June 2021. PARTICIPANTS: 500 patients aged 18-80 years (including 91 (18.2%) women) who had elective coronary artery bypass grafting surgery and completed the DACAB trial. INTERVENTIONS: Patients were randomised 1:1:1 to ticagrelor 90 mg twice daily plus aspirin 100 mg once daily (dual antiplatelet therapy; n=168), ticagrelor monotherapy 90 mg twice daily (n=166), or aspirin monotherapy 100 mg once daily (n=166) for one year after surgery. After the first year, antiplatelet therapy was prescribed according to standard of care by treating physicians. MAIN OUTCOME MEASURES: The primary outcome was major adverse cardiovascular events (a composite of all cause death, myocardial infarction, stroke, and coronary revascularisation), analysed using the intention-to-treat principle. Time-to-event analysis was used to compare the risk between treatment groups. Multiple post hoc sensitivity analyses examined the robustness of the findings. RESULTS: Follow-up at five years for major adverse cardiovascular events was completed for 477 (95.4%) of 500 patients; 148 patients had major adverse cardiovascular events, including 39 in the dual antiplatelet therapy group, 54 in the ticagrelor monotherapy group, and 55 in the aspirin monotherapy group. Risk of major adverse cardiovascular events at five years was significantly lower with dual antiplatelet therapy versus aspirin monotherapy (22.6% v 29.9%; hazard ratio 0.65, 95% confidence interval 0.43 to 0.99; P=0.04) and versus ticagrelor monotherapy (22.6% v 32.9%; 0.66, 0.44 to 1.00; P=0.05). Results were consistent in all sensitivity analyses. CONCLUSIONS: Treatment with ticagrelor dual antiplatelet therapy for one year after surgery reduced the risk of major adverse cardiovascular events at five years after coronary artery bypass grafting compared with aspirin monotherapy or ticagrelor monotherapy. TRIAL REGISTRATION: NCT03987373ClinicalTrials.gov NCT03987373.


Assuntos
Aspirina , Ponte de Artéria Coronária , Inibidores da Agregação Plaquetária , Ticagrelor , Humanos , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/administração & dosagem , Feminino , Masculino , Pessoa de Meia-Idade , Ticagrelor/uso terapêutico , Aspirina/uso terapêutico , Aspirina/administração & dosagem , Idoso , Seguimentos , Adulto , Idoso de 80 Anos ou mais , Quimioterapia Combinada , Adolescente , Complicações Pós-Operatórias/prevenção & controle , Resultado do Tratamento , Adulto Jovem , China , Terapia Antiplaquetária Dupla/métodos
7.
Chem Biol Interact ; 398: 111107, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38866309

RESUMO

Benzene is the main environmental pollutant and risk factor of childhood leukemia and chronic benzene poisoning. Benzene exposure leads to hematopoietic stem and progenitor cell (HSPC) dysfunction and abnormal blood cell counts. However, the key regulatory targets and mechanisms of benzene hematotoxicity are unclear. In this study, we constructed a benzene-induced hematopoietic damage mouse model to explore the underlying mechanisms. We identified that Insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) was significantly reduced in benzene-exposed mice. Moreover, targeting IGF2BP1 effectively mitigated damages to hematopoietic function and hematopoietic molecule expression caused by benzene in mice. On the mechanics, by metabolomics and transcriptomics, we discovered that branched-chain amino acid (BCAA) metabolism and fatty acid oxidation were key metabolic pathways, and Branched-chain amino acid transaminase 1 (BCAT1) and Carnitine palmitoyltransferase 1a (CPT1A) were critical metabolic enzymes involved in IGF2BP1-mediated hematopoietic injury process. The expression of the above molecules in the benzene exposure population was also examined and consistent with animal experiments. In conclusion, targeting IGF2BP1 alleviated hematopoietic injury caused by benzene exposure, possibly due to the reprogramming of BCAA metabolism and fatty acid oxidation via BCAT1 and CPT1A metabolic enzymes. IGF2BP1 is a potential regulatory and therapeutic target for benzene hematotoxicity.


Assuntos
Aminoácidos de Cadeia Ramificada , Benzeno , Ácidos Graxos , Oxirredução , Animais , Benzeno/toxicidade , Aminoácidos de Cadeia Ramificada/metabolismo , Ácidos Graxos/metabolismo , Oxirredução/efeitos dos fármacos , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Masculino , Camundongos Endogâmicos C57BL , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos
8.
ACS Sens ; 9(6): 2705-2727, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38843307

RESUMO

The ultrasensitive recognition of biomarkers plays a crucial role in the precise diagnosis of diseases. Graphene-based field-effect transistors (GFET) are considered the most promising devices among the next generation of biosensors. GFET biosensors possess distinct advantages, including label-free, ease of integration and operation, and the ability to directly detect biomarkers in liquid environments. This review summarized recent advances in GFET biosensors for biomarker detection, with a focus on interface functionalization. Various sensitivity-enhancing strategies have been overviewed for GFET biosensors, from the perspective of optimizing graphene synthesis and transfer methods, refinement of surface functionalization strategies for the channel layer and gate electrode, design of biorecognition elements and reduction of nonspecific adsorption. Further, this review extensively explores GFET biosensors functionalized with antibodies, aptamers, and enzymes. It delves into sensitivity-enhancing strategies employed in the detection of biomarkers for various diseases (such as cancer, cardiovascular diseases, neurodegenerative disorders, infectious viruses, etc.) along with their application in integrated microfluidic systems. Finally, the issues and challenges in strategies for the modulation of biosensing interfaces are faced by GFET biosensors in detecting biomarkers.


Assuntos
Biomarcadores , Técnicas Biossensoriais , Grafite , Transistores Eletrônicos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Grafite/química , Biomarcadores/análise , Humanos
9.
Phytomedicine ; 130: 155743, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38824822

RESUMO

BACKGROUND: Insulin resistance (IR) is the central pathophysiological feature in the pathogenesis of metabolic syndrome, obesity, type 2 diabetes mellitus (T2DM), hypertension, and dyslipidemia. As the main active ingredient in Lithocarpus litseifolius [Hance] Chun, previous studies have shown that phlorizin (PHZ) can reduce insulin resistance in the liver. However, the effect of phlorizin on attenuating hepatic insulin resistance has not been fully investigated, and whether this effect is related to AMPK remains unclear. PURPOSE: The present study aimed to further investigate the effect of phlorizin on attenuating insulin resistance and the potential action mechanism. METHODS: Free fatty acids (FFA) were used to induce insulin resistance in HepG2 cells. The effects of phlorizin and FFA on cell viability were detected by MTT analysis. Glucose consumption, glycogen synthesis, intracellular malondialdehyde (MDA), superoxide dismutase (SOD), total cholesterol (TC), and triglyceride (TG) contents were quantified after phlorizin treatment. Glucose uptake and reactive oxygen species (ROS) levels in HepG2 cells were assayed by flow cytometry. Potential targets and signaling pathways for attenuating insulin resistance by phlorizin were predicted by network pharmacological analysis. Moreover, the expression levels of proteins related to the AMPK/PI3K/AKT signaling pathway were detected by western blot. RESULTS: Insulin resistance was successfully induced in HepG2 cells by co-treatment of 1 mM sodium oleate (OA) and 0.5 mM sodium palmitate (PA) for 24 h. Treatment with phlorizin promoted glucose consumption, glucose uptake, and glycogen synthesis and inhibited gluconeogenesis in IR-HepG2 cells. In addition, phlorizin inhibited oxidative stress and lipid accumulation in IR-HepG2 cells. Network pharmacological analysis showed that AKT1 was the active target of phlorizin, and the PI3K/AKT signaling pathway may be the potential action mechanism of phlorizin. Furthermore, western blot results showed that phlorizin ameliorated FFA-induced insulin resistance by activating the AMPK/PI3K/AKT signaling pathway. CONCLUSION: Phlorizin inhibited oxidative stress and lipid accumulation in IR-HepG2 cells and ameliorated hepatic insulin resistance by activating the AMPK/PI3K/AKT signaling pathway. Our study proved that phlorizin played a role in alleviating hepatic insulin resistance by activating AMPK, which provided experimental evidence for the use of phlorizin as a potential drug to improve insulin resistance.


Assuntos
Ácidos Graxos não Esterificados , Resistência à Insulina , Florizina , Transdução de Sinais , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Células Hep G2 , Florizina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Obesity (Silver Spring) ; 32(6): 1102-1113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38803303

RESUMO

OBJECTIVE: The study objective was to characterize subgroups of Asia-Pacific patients with type 2 diabetes who achieved different glycated hemoglobin (HbA1c) targets on tirzepatide treatment. METHODS: This was a post hoc analysis of the SURPASS AP-Combo study. Baseline characteristics, changes in metabolic markers, and safety were compared between tirzepatide-treated patients achieving HbA1c <7.0% (<53 mmol/mol) and those achieving ≥7.0% (≥53 mmol/mol) at week 40. Among patients achieving HbA1c <7.0% (<53 mmol/mol), further comparisons were conducted among subgroups achieving HbA1c <5.7% (<39 mmol/mol), 5.7% to 6.5% (39 to 48 mmol/mol), and >6.5% to <7.0% (>48 to <53 mmol/mol). RESULTS: Five hundred ninety-eight patients on tirzepatide treatment without rescue medication were included (56.9% male; mean age: 53.1 years; mean baseline HbA1c: 8.7% [71.6 mmol/mol]). Patients achieving HbA1c <7.0% (<53 mmol/mol) versus ≥7.0% (≥53 mmol/mol) were slightly younger with a shorter disease duration and lower HbA1c at baseline, and they had greater improvements in HbA1c, fasting serum glucose, body weight, BMI, waist circumference, waist-height ratio, diastolic blood pressure, lipids, and self-monitored blood glucose at week 40. Patients achieving HbA1c <5.7% (<39 mmol/mol) versus those achieving 5.7% to 6.5% (39 to 48 mmol/mol) and those achieving >6.5% to <7.0% (>48 to <53 mmol/mol) were much younger, had much lower HbA1c, and had further improvements in metabolic markers. Tirzepatide treatment was well tolerated irrespective of the HbA1c level achieved, with a low incidence of hypoglycemic events. CONCLUSIONS: These findings may help to inform clinical decisions in Asia-Pacific patients with type 2 diabetes.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Hemoglobinas Glicadas , Controle Glicêmico , Hipoglicemiantes , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Hemoglobinas Glicadas/metabolismo , Hemoglobinas Glicadas/análise , Controle Glicêmico/métodos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Adulto , Idoso , Índice de Massa Corporal , Resultado do Tratamento , Receptor do Peptídeo Semelhante ao Glucagon 2 , Polipeptídeo Inibidor Gástrico
11.
Cancer Med ; 13(9): e7228, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733174

RESUMO

BACKGROUND: The molecular and immunological characteristics of primary tumors and positive lymph nodes in esophageal squamous cell carcinoma (ESCC) are unknown and the relationship with recurrence is unclear, which this study attempted to explore. METHODS: A total of 30 ESCC patients with lymph node positive (IIB-IVA) were enrolled. Among them, primary tumor and lymph node specimens were collected from each patient, and subjected to 551-tumor-targeted DNA sequencing and 289-immuno-oncology RNA panel sequencing to identify the different molecular basis and immunological features, respectively. RESULTS: The primary tumors exhibited a higher mutation burden than lymph nodes (p < 0.001). One-year recurrent ESCC exhibited a higher Mucin16 (MUC16) mutation rate (p = 0.038), as well as univariate and multivariate analysis revealed that MUC16 mutation is independent genetic factor associated with reduced relapse-free survival (univariate, HR: 5.39, 95% CI: 1.67-17.4, p = 0.005; multivariate, HR: 7.36, 95% CI: 1.79-30.23, p = 0.006). Transcriptomic results showed non-relapse group had higher cytolytic activity (CYT) score (p = 0.025), and was enriched in the IFN-α pathway (p = 0.036), while those in the relapsed group were enriched in the TNF-α/NF-κB (p = 0.001) and PI3K/Akt pathway (p = 0.014). CONCLUSION: The difference in molecular characteristics between primary lesions and lymph nodes may be the cause of the inconsistent clinical outcomes. Mutations of MUC16 and poor immune infiltration are associated with rapid relapse of nodes-positive ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Linfonodos , Metástase Linfática , Mutação , Recidiva Local de Neoplasia , Humanos , Masculino , Feminino , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/cirurgia , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/patologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Neoplasias Esofágicas/mortalidade , Linfonodos/patologia , Linfonodos/imunologia , Idoso , Biomarcadores Tumorais/genética , Prognóstico , Proteínas de Membrana , Antígeno Ca-125
12.
World J Clin Oncol ; 15(4): 554-565, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38689624

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy with a high morbidity and mortality rate. TMEM100 has been shown to be suppressor gene in a variety of tumors, but there are no reports on the role of TMEM100 in esophageal cancer (EC). AIM: To investigate epigenetic regulation of TMEM100 expression in ESCC and the effect of TMEM100 on ESCC proliferation and invasion. METHODS: Firstly, we found the expression of TMEM100 in EC through The Cancer Genome Atlas database. The correlation between TMEM100 gene expression and the survival of patients with EC was further confirmed through Kaplan-Meier analysis. We then added the demethylating agent 5-AZA to ESCC cell lines to explore the regulation of TMEM100 expression by epigenetic modification. To observe the effect of TMEM100 expression on tumor proliferation and invasion by overexpressing TMEM100. Finally, we performed gene set enrichment analysis using the Kyoto Encyclopaedia of Genes and Genomes Orthology-Based Annotation System database to look for pathways that might be affected by TMEM100 and verified the effect of TMEM100 expression on the mitogen-activated protein kinases (MAPK) pathway. RESULTS: In the present study, by bioinformatic analysis we found that TMEM100 was lowly expressed in EC patients compared to normal subjects. Kaplan-meier survival analysis showed that low expression of TMEM100 was associated with poor prognosis in patients with EC. Then, we found that the demethylating agent 5-AZA resulted in increased expression of TMEM100 in ESCC cells [quantitative real-time PCR (qRT-PCR) and western blotting]. Subsequently, we confirmed that overexpression of TMEM100 leads to its increased expression in ESCC cells (qRT-PCR and western blotting). Overexpression of TMEM100 also inhibited proliferation, invasion and migration of ESCC cells (cell counting kit-8 and clone formation assays). Next, by enrichment analysis, we found that the gene set was significantly enriched in the MAPK signaling pathway. The involvement of TMEM100 in the regulation of MAPK signaling pathway in ESCC cell was subsequently verified by western blotting. CONCLUSION: TMEM100 is a suppressor gene in ESCC, and its low expression may lead to aberrant activation of the MAPK pathway. Promoter methylation may play a key role in regulating TMEM100 expression.

13.
Adv Sci (Weinh) ; : e2401263, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767182

RESUMO

Single-cell multiomic and exosome analyses are potent tools in various fields, such as cancer research, immunology, neuroscience, microbiology, and drug development. They facilitate the in-depth exploration of biological systems, providing insights into disease mechanisms and aiding in treatment. Single-cell isolation, which is crucial for single-cell analysis, ensures reliable cell isolation and quality control for further downstream analyses. Microfluidic chips are small lightweight systems that facilitate efficient and high-throughput single-cell isolation and real-time single-cell analysis on- or off-chip. Therefore, most current single-cell isolation and analysis technologies are based on the single-cell microfluidic technology. This review offers comprehensive guidance to researchers across different fields on the selection of appropriate microfluidic chip technologies for single-cell isolation and analysis. This review describes the design principles, separation mechanisms, chip characteristics, and cellular effects of various microfluidic chips available for single-cell isolation. Moreover, this review highlights the implications of using this technology for subsequent analyses, including single-cell multiomic and exosome analyses. Finally, the current challenges and future prospects of microfluidic chip technology are outlined for multiplex single-cell isolation and multiomic and exosome analyses.

14.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697043

RESUMO

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Assuntos
Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética , Nanopartículas , Polímeros , Semicondutores , Imageamento por Ressonância Magnética/métodos , Animais , Elementos da Série dos Lantanídeos/química , Polímeros/química , Nanopartículas/química , Camundongos , Humanos , Gadolínio/química , Luminescência , Oxigênio Singlete/química , Ítrio/química , Fluoretos/química , Camundongos Nus
15.
Food Chem X ; 22: 101423, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38764782

RESUMO

Colored potatoes have many health benefits because they are rich in anthocyanins. However, the constituent and property of anthocyanins in colored potatoes have not been systematically studied yet. Herein, metabolomic analysis was carried out to investigate the chemical composition of anthocyanins in the four different colored potatoes. After that, the extract and purification conditions, and the stability of the anthocyanins were further studied. The results indicated that the four colored potatoes contained abundant of polyphenols, flavonoids, and anthocyanins. Cyanidin, delphinidin, and malvidin were identified as the major anthocyanidins in purple potatoes, whereas red potatoes were mainly consisted of pelargonidin and its derivatives. 84.47 mg C3GE/100 g DW of anthocyanins was obtained at the optimal conditions, which could be effectively purified macroporous resin of D101. Moreover, the anthocyanins were sensitive to pH, temperature, light, redox agents, and divalent or trivalent metal ions, but stable to sugars and univalent metal ions.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38804624

RESUMO

BACKGROUND: The aim of this study was using bioinformatic tools to identify hub genes in the relationship between septic cardiomyopathy (SCM) and cuproptosis and predict potential Chinese herbal drug candidates. METHODS: SCM datasets were downloaded from the gene expression omnibus. Cuproptosis related genes were collected from a research published on Science in March, 2022. The expression profiles of genes related to cuproptosis in SCM were extracted. Differentially expressed genes (DEGs) were analyzed using R package limma. A single-sample gene set enrichment analysis was conducted to measure the correlation between DEGs and immune cell infiltration. Hub genes were screened out by random forest model. Finally, HERB database and COREMINE database were used to predict Chinese herbal drugs for hub genes and carry out molecular docking. RESULTS: A total of 9 DEGs were identified. Cuproptosis differential genes PDHB, DLAT, DLD, FDX1, GCSH, LIAS were significantly correlated with one or more cells and their functions in immune infiltration. The random forest model screened pyruvate dehydrogenase E1 beta subunit (PDHB) as the hub gene. PDHB was negatively correlated with Plasmacytoid dendritic cell infiltration. Pyruvic acid, rhodioloside and adenosine were predicted with PDHB as the target, and all three components are able to bind to PDHB. CONCLUSIONS: Cuproptosis related gene PDHB is associated with the occurrence and immune infiltration of septic cardiomyopathy. Rhodioloside and other Chinese herbal drugs may play a role in the treatment of SCM by regulating the expression of PDHB.

17.
Phytomedicine ; 129: 155661, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677269

RESUMO

BACKGROUND: Gallbladder cancer (GBC) poses a significant risk to human health. Its development is influenced by numerous factors, particularly the homeostasis of reactive oxygen species (ROS) within cells. This homeostasis is crucial for tumor cell survival, and abnormal regulation of ROS is associated with the occurrence and progression of many cancers. Dihydrotanshinone I (DHT I), a biologically effective ingredient isolated from Salvia miltiorrhiza, has exhibited cytotoxic properties against various tumor cells by inducing apoptosis. However, the precise molecular mechanisms by which dht I exerts its cytotoxic effects remain unclear. PURPOSE: To explore the anti-tumor impact of dht I on GBC and elucidate the potential molecular mechanisms. METHODS: The proliferation of GBC cells, NOZ and SGC-996, was assessed using various assays, including CCK-8 assay, colony formation assay and EdU staining. We also examined cell apoptosis, cell cycle progression, ROS levels, and alterations in mitochondrial membrane potential to delve into the intricate molecular mechanism. Quantitative PCR (qPCR), immunofluorescence staining, and Western blotting were performed to evaluate target gene expression at both the mRNA and protein levels. The correlation between nuclear factor erythroid 2-related factor 2 (Nrf2) and kelch-like ECH-associated protein 1 (Keap1) were examined using co-immunoprecipitation. Finally, the in vivo effect of dht I was investigated using a xenograft model of gallbladder cancer in mice. RESULTS: Our research findings indicated that dht I exerted cytotoxic effects on GBC cells, including inhibiting proliferation, disrupting mitochondrial membrane potential, inducing oxidative stress and apoptosis. Our in vivo studies substantiated the inhibition of dht I on tumor growth in xenograft nude mice. Mechanistically, dht I primarily targeted Nrf2 by promoting Keap1 mediated Nrf2 degradation and inhibiting protein kinase C (PKC) induced Nrf2 phosphorylation. This leads to the suppression of Nrf2 nuclear translocation and reduction of its target gene expression. Moreover, Nrf2 overexpression effectively counteracted the anti-tumor effects of dht I, while Nrf2 knockdown significantly enhanced the inhibitory effect of dht I on GBC. Meanwhile, PKC inhibitors and nuclear import inhibitors increased the sensitivity of GBC cells to dht I treatment. Conversely, Nrf2 activators, proteasome inhibitors, antioxidants and PKC activators all antagonized dht I induced apoptosis and ROS generation in NOZ and SGC-996 cells. CONCLUSION: Our findings indicated that dht I inhibited the growth of GBC cells by regulating the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation. These insights provide a strong rationale for further investigation of dht I as a potential therapeutic agent for GBC treatment.


Assuntos
Apoptose , Proliferação de Células , Neoplasias da Vesícula Biliar , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos Nus , Fator 2 Relacionado a NF-E2 , Fenantrenos , Espécies Reativas de Oxigênio , Transdução de Sinais , Animais , Humanos , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Furanos/farmacologia , Neoplasias da Vesícula Biliar/tratamento farmacológico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/metabolismo , Fenantrenos/farmacologia , Fosforilação/efeitos dos fármacos , Quinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Salvia miltiorrhiza/química , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Anal Chim Acta ; 1304: 342576, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637043

RESUMO

BACKGROUND: Small endosome-derived lipid nanovesicles (30-200 nm) are actively secreted by living cells and serve as pivotal biomarkers for early cancer diagnosis. However, the study of extracellular vesicles (EVs) requires isolation and purification from various body fluids. Although traditional EVs isolation and detection technologies are mature, they usually require large amount of sample, consumes long-time, and have relatively low-throughput. How to efficiently isolate, purify and detect these structurally specific EVs from body fluids with high-throughput remains a great challenge in in vitro diagnostics and clinical research. RESULTS: Herein, we suggest a nanosized microfluidic device for efficient and economical EVs filtration based on an alumina nanochannel array membrane. We evaluated the filtration device performance of alumina membranes with different diameters and found that an optimized chamber array with a hydrophilic-treated channel diameter of 90 nm could realize a filtration efficiency of up to 82% without any assistance from chemical or physical separation methods. Importantly, by integrating meticulously designed multichannel microfluidic biochips, EVs can be captured in-situ and monitored by antibody barcode biochip. The proposed filtration chip together with the high-throughput detection chip were capable of filtration of a few tens of µL samples and recognition of different phonotypes. The practical filtration and detection of EVs from clinical samples demonstrated the high performance of the device. SIGNIFICANT: Overall, this work provides a cost-effective, highly efficient and automated EVs filtration chip and detection dual-function integrated chip platform, which can directly separate EVs from serum or cerebrospinal fluid with an efficiency of 82% and conduct in-situ detection. This small fluidic device can provide a powerful tool for highly efficient identifying and analyzing EVs, presenting great application potential in clinical detection.


Assuntos
Vesículas Extracelulares , Microfluídica , Espaço Extracelular , Anticorpos , Biomarcadores Tumorais
19.
J Cardiol ; 84(2): 73-79, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38583664

RESUMO

The tricuspid valve is known as "the forgotten valve". Tricuspid regurgitation (TR) is a highly prevalent valvular heart disease. TR is often late in the course of the disease when it becomes symptomatic, often being a marker of late-stage chronic heart failure with a poor prognosis and high mortality rate at long-term follow-up. Despite the clear correlation between TR and mortality, most TR patients are under-treated. Neither pharmacologic nor surgical treatment demonstrates a significant survival benefit. Isolated tricuspid valve surgery has the highest mortality rate of all valve surgeries. Therefore, there is an urgent clinical need for minimally invasive therapies to meet the needs of patients with TR. In recent years, a variety of transcatheter tricuspid valve interventions representing less invasive alternatives to surgery have shown promising results, which bring hope to patients with severe TR. The purpose of this review is to provide a complete and updated overview on current transcatheter tricuspid valve interventions and clinical evidence.


Assuntos
Cateterismo Cardíaco , Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Tricúspide , Valva Tricúspide , Humanos , Insuficiência da Valva Tricúspide/cirurgia , Valva Tricúspide/cirurgia , Cateterismo Cardíaco/métodos , Implante de Prótese de Valva Cardíaca/métodos , Próteses Valvulares Cardíacas
20.
Front Oncol ; 14: 1280607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646429

RESUMO

Objective: There is still controversy about whether cervical lymph node dissection should be performed in surgical treatment of PTC. Based on the data of thyroid cancer patients from Liaocheng People's Hospital from 2015 to 2018, this study focused on appropriate indications for cervical lymph node dissection surgery. Methods: The clinical and pathological data of patients with initial treatment of PTC in thyroid surgery department from 2015 to 2018 were collected. In all cases, 1001 patients underwent total thyroidectomy + central lymph node dissection, and 1107 patients underwent total thyroidectomy + central + cervical lymph node dissection. Results: The average metastasis rate of all cases was 57.23%, and even the metastasis rate of PTMC was as high as 48.97%. The total metastasis rate of central and lateral cervical lymph nodes was 74.44%, and the cervical lymph nodes were present in 49.32% of the metastatic cases. In 55.56% of the cases, the tumor diameter was more than 1 cm, and the metastasis rate of cervical lateral area was 56%. With the increase of tumor diameter, the cervical metastasis rate increased from 22.54% to 73.33%. Conclusion: The metastasis rate of PTC is more than 50%, and nearly half of them have cervical metastasis, especially in patients with high risk factors. We observed that PTC 1 cm or greater has significant rates of metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA