Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(48): 11612-11619, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038224

RESUMO

The complexity, degradability, and stability of drug delivery systems are crucial factors for clinical application. Herein, a glutathione (GSH)-responsive polyethylene glycol (PEG)ylated nanogel conjugated with doxorubicin (Dox) was prepared based on a linker with disulfide bonds, PEG, and Dox using a one-pot method. FT-IR and UV-vis analyses confirmed that all raw materials were incorporated in the Dox-conjugated nanogel structure. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results showed that the particle size of the Dox-conjugated nanogel was at the nanoscale and could be responsively disrupted in high GSH concentration. The in vitro accumulative Dox release rate from the nanogel reached 88% in PBS with 5 mg mL-1 GSH on day 4. Moreover, H22 cell viability and apoptosis experiments revealed that the nanogel effectively inhibited tumor cell growth. In vivo tracking and cell uptake experiments demonstrated that the nanogel accumulated and persisted in tumor tissues for 5 days and was distributed into cell nuclei at 6 h. Furthermore, H22-bearing mice experiments showed that the tumor size of the Dox-conjugated nanogel group was the smallest (287 mm3) compared to that of the free Dox (558 mm3) and 0.9% NaCl (2700 mm3) groups. Meanwhile, the body weight of mice as well as the H&E and TUNEL tissue section staining of organs and tumor tissues from the mice illustrated that the nanogel could significantly prevent side effects and induce tumor cell apoptosis. Taken together, compared with free Dox, the Dox-conjugated nanogel exhibited higher therapeutic efficacy and lower side effects in normal tissues, making it a potential novel nanomedicine for cancer.


Assuntos
Doxorrubicina , Neoplasias , Animais , Camundongos , Nanogéis/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier , Doxorrubicina/química , Glutationa/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polietilenoglicóis/química
2.
RSC Adv ; 12(43): 27963-27969, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320274

RESUMO

In this study, we report a one-pot synthesis and enzyme-responsiveness of polyethylene glycol (PEG) and glutamic acid (Glu)-based amphiphilic doxorubicin (DOX) prodrug nanomicelles for cancer therapeutics. The nanomicelles were accomplished by esterification and amidation reactions. The nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) data confirmed the structure of nanomicelles. The DOX-loaded nanomicelles showed a DLS-measured average size of 107 nm and excellent stability in phosphate-buffered saline (PBS) for 7 days. The drug loading and cumulative release rates were measured by ultraviolet-visible (UV-vis) spectrophotometry at 481 nm. The cumulative release rate could reach 100% in an enzyme-rich environment. Further, the therapeutic efficiency of nanomicelles to cancer cells was determined by cell viability and cellular uptake and distribution using HeLa cells. The cell viability study showed that the DOX-loaded nanomicelles could effectively inhibit the HeLa cell proliferation. The cellular uptake study confirmed that the nanomicelles could be effectively ingested by HeLa cells and distributed into cell nuclei. Based on the collective experimental data, this study demonstrated that the synthesized nanomicellar prodrug of DOX is a potential candidate for cancer therapeutics.

3.
J Alzheimers Dis ; 80(2): 695-713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579843

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function. Type 2 diabetes mellitus (T2DM) is an important risk factor for AD. Glucose-dependent insulinotropic polypeptide (GIP) has been identified to be effective in T2DM treatment and neuroprotection. OBJECTIVE: The present study investigated the neuroprotective effects and possible mechanisms of DAla2GIP-Glu-PAL, a novel long-lasting GIP analogue, in APP/PS1 AD mice. METHODS: Multiple behavioral tests were performed to examine the cognitive function of mice. In vivo hippocampus late-phase long-term potentiation (L-LTP) was recorded to reflect synaptic plasticity. Immunohistochemistry and immunofluorescence were used to examine the Aß plaques and neuroinflammation in the brain. IL-1ß, TNF-α, and cAMP/PKA/CREB signal molecules were also detected by ELISA or western blotting. RESULTS: DAla2GIP-Glu-PAL increased recognition index (RI) of APP/PS1 mice in novel object recognition test, elevated spontaneous alternation percentage of APP/PS1 mice in Y maze test, and increased target quadrant swimming time of APP/PS1 mice in Morris water maze test. DAla2GIP-Glu-PAL treatment enhanced in vivo L-LTP of APP/PS1 mice. DAla2GIP-Glu-PAL significantly reduced Aß deposition, inhibited astrocyte and microglia proliferation, and weakened IL-1ß and TNF-α secretion. DAla2GIP-Glu-PAL also upregulated cAMP/PKA/CREB signal transduction and inhibited NF-κB activation in the hippocampus of APP/PS1 mice. CONCLUSION: DAla2GIP-Glu-PAL can improve cognitive behavior, synaptic plasticity, and central pathological damage in APP/PS1 mice, which might be associated with the inhibition of neuroinflammation, as well as upregulation of cAMP-/PKA/CREB signaling pathway. This study suggests a potential benefit of DAla2GIP-Glu-PAL in the treatment of AD.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Cognição/efeitos dos fármacos , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Placa Amiloide/patologia
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 48(6): 844-849, 2017 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-29260518

RESUMO

OBJECTIVE: To determine the expression level of long non-coding RNA (lncRNA) imprinted maternallyexpressed transcript (H19) in colorectal cancer tissues and its effect on proliferation of colorectal cancer SW620 cells. METHODS: Real-time quantitative PCR (qRT-PCR) was applied to detect the expression of H19 in 20 paired tumor tissues and adjacent normal tissues,and in normal NCM460 cells and colorectal cancer SW480,HCT116 and SW620 cells. The specific small interfering RNA for H19 (si-H19 group) or negative control sequence (si-NC group) were transfected into SW620 cells. Proliferation of the transfected cells was detected using flow cytometry,CCK8 assay and clone formation experiment. The expressions of CyclinD1 and cyclin dependent kinase 4 (CDK4) were detected by qRT-PCR and Western blot. RESULTS: The expression levels of H19 in colorectal cancer tissues and cells were higher compared with those in adjacent normal tissues and normal NCM460 cells. Lower H19 level,cell activities and cell clone numbers were found in si-H19 transfected cells compared with those in si-NC transfected cells ( P<0.05). si-H19transfected cells had decreased expression of CyclinD1 and CDK4 ( P<0.05). CONCLUSION: H19expression in colorectal cancer is high. Knock-down H19 expression can inhibit proliferation of colorectal cancer cells,which provides a potential strategy for targeted therapy of colorectal cancer.


Assuntos
Proliferação de Células , Neoplasias Colorretais/patologia , RNA Longo não Codificante/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Humanos , RNA Interferente Pequeno , Transfecção
5.
Int Immunopharmacol ; 49: 50-59, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28550734

RESUMO

Liver injury occurs frequently during sepsis. Pterostilbene (Pte), a natural dimethylated analog of resveratrol from blueberries, exerts anti-inflammatory and anti-apoptotic effects in various diseases. However, the role of Pte in sepsis-induced liver injury and its underlying mechanisms remain unknown. The current study aimed to evaluate the protective effects of Pte on sepsis-induced liver injury and its potential mechanisms. Sepsis was induced using cecal ligation and puncture (CLP) in C57BL/6 mice. Mice were administered Pte (5, 10, 15mg/kg, i.p.) at 0.5h, 2h, and 8h after CLP induction. The pathological changes of the liver were evaluated using hematoxylin and eosin (H&E) staining. The serum levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) were measured. The levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL-6), myeloperoxidase (MPO), p38 mitogen-activated protein kinase (p38MAPK), Bax, and B-cell lymphoma 2 (Bcl-2) were also evaluated. Pte treatment attenuated the CLP-induced liver injury, as evidenced by the attenuated histopathologic injuries and the decreased serum aminotransferase levels. Pte reduced the serum inflammatory cytokine (TNF-α and IL-6) levels and hepatic mRNA levels of TNF-α and IL-6. Pte also reduced MPO activity and p38MAPK activation in the liver. Additionally, Pte significantly inhibited Bax expression and increased Bcl-2 expression. Moreover, Pte increased the expression of sirtuin-1 (SIRT1) and reduced the expression of acetylated forkhead box O1 (Ac-FoxO1), acetylated Ac-p53, and acetylated nuclear factor-kappa beta (Ac-NF-κB). However, SIRT1 small interfering RNA (siRNA) abolished Pte's effects on the expression levels of those protein. Notably, Pte improved the survival rate in septic mice. In conclusion, Pte alleviates sepsis-induced liver injury by reducing inflammatory response and inhibiting hepatic apoptosis, and the potential mechanism is associated with SIRT1 signaling activation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fígado/efeitos dos fármacos , Sepse/tratamento farmacológico , Sirtuína 1/metabolismo , Estilbenos/uso terapêutico , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Mirtilos Azuis (Planta)/metabolismo , Ceco/cirurgia , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Fígado/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Transdução de Sinais , Sirtuína 1/genética , Estilbenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA