Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 13: 1139809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829340

RESUMO

Although some studies have reported on the levels and clinical significance of peripheral blood neutrophil/lymphocyte ratio (NLR) in cervical cancer, the role of NLR levels and their changes preoperatively and postoperatively in early cervical cancer remain unclear. Our analyses explored the preoperative and postoperative NLR in 203 patients with stage I-IIA cervical cancer and evaluated the relationship between NLR changes, clinicopathological characteristics, and patient prognosis. The cut-off preoperative and postoperative NLR values were determined using receiver operating characteristic curve analysis. Preoperative NLR correlated with age, menopausal status, tumor size, and vascular infiltration, whereas postoperative NLR correlated with tumor differentiation. Patients with cervical cancer with a high preoperative NLR had significantly shorter overall survival (OS) and progression-free survival (PFS) than other patients, whereas PFS was significantly lower in the high postoperative NLR group. When comparing postoperative and preoperative NLR values, we observed a significantly higher rate of increase in postmenopausal patients and those without vascular infiltration than that among premenopausal patients and those with vascular infiltration. However, no clear difference in prognosis was observed between the groups with increased and decreased NLR. Therefore, a high peripheral blood NLR may predict a poor prognosis in patients with early cervical cancer. The effect of NLR changes on the prognosis of patients with cervical cancer requires further verification in multicenter studies.

2.
Chemosphere ; 329: 138651, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059204

RESUMO

Trichloroethylene is carcinogenic and poorly degraded by microorganisms in the environment. Advanced Oxidation Technology is considered to be an effective treatment technology for TCE degradation. In this study, a double dielectric barrier discharge (DDBD) reactor was established to decompose TCE. The influence of different condition parameters on DDBD treatment of TCE was investigated to determine the appropriate working conditions. The chemical composition and biotoxicity of TCE degradation products were also investigated. Results showed that when SIE was 300 J L-1, the removal efficiency could reach more than 90%. The energy yield could reach 72.99 g kWh-1 at low SIE and gradually decreased with the increase of SIE. The k of the Non-thermal plasma (NTP) treatment of TCE was about 0.01 L J-1. DDBD degradation products were mainly polychlorinated organic compounds and produced more than 373 mg m-3 ozone. Moreover, a plausible TCE degradation mechanism in the DDBD reactors was proposed. Lastly, the ecological safety and biotoxicity were evaluated, indicating that the generation of chlorinated organic products was the main cause of elevated acute biotoxicity.


Assuntos
Ozônio , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/química , Ozônio/química , Oxirredução , Poluentes Químicos da Água/análise
3.
Microbiome ; 10(1): 150, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36117217

RESUMO

BACKGROUND: Controlling excess biomass accumulation and clogging is important for maintaining the performance of gas biofilters and reducing energy consumption. Interruption of bacterial communication (quorum quenching) can modulate gene expression and alter biofilm properties. However, whether the problem of excess biomass accumulation in gas biofilters can be addressed by interrupting bacterial communication remains unknown. RESULTS: In this study, parallel laboratory-scale gas biofilters were operated with Rhodococcus sp. BH4 (QQBF) and without Rhodococcus sp. BH4 (BF) to explore the effects of quorum quenching (QQ) bacteria on biomass accumulation and clogging. QQBF showed lower biomass accumulation (109 kg/m3) and superior operational stability (85-96%) than BF (170 kg/m3; 63-92%) at the end of the operation. Compared to BF, the QQBF biofilm had lower adhesion strength and decreased extracellular polymeric substance production, leading to easier detachment of biomass from filler surface into the leachate. Meanwhile, the relative abundance of quorum sensing (QS)-related species was found to decrease from 67 (BF) to 56% (QQBF). The QS function genes were also found a lower relative abundance in QQBF, compared with BF. Moreover, although both biofilters presented aromatic compounds removal performance, the keystone species in QQBF played an important role in maintaining biofilm stability, while the keystone species in BF exhibited great potential for biofilm formation. Finally, the possible influencing mechanism of Rhodococcus sp. BH4 on biofilm adhesion was demonstrated. Overall, the results of this study achieved excess biomass control while maintaining stable biofiltration performance (without interrupting operation) and greatly promoted the use of QQ technology in bioreactors. Video Abstract.


Assuntos
Microbiota , Rhodococcus , Comunicação , Matriz Extracelular de Substâncias Poliméricas , Percepção de Quorum/fisiologia , Rhodococcus/genética
4.
Chemosphere ; 253: 126737, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32302908

RESUMO

Bioaerosols have widely been a concern due to their potential harm to human health caused by the carrying and spreading of harmful microorganisms. Biofiltration has been generally used as a green and effective technology for processing VOCs. However, bioaerosols can be emitted into the atmosphere as secondary pollutants from the biofiltration process. This review presents an overview of bioaerosol emissions from gas bioreactors. The mechanism of bioaerosols production and the effect of biofiltration on bioaerosol emissions were analyzed. The results showed that the bioaerosol emission concentrations were generally exceeded 104 CFU m-3, which would damage to human health. Biomass, inlet gas velocity, moisture content, temperature, and some other factors have significant influences on bioaerosol emissions. Moreover, as a result of the analysis done herein, different inactivation technologies and microbial immobilization of bioaerosols were proposed and evaluated as a potential solution for reducing bioaerosols emissions. The purpose of this paper is to make more people realize the importance of controlling the emissions of bioaerosols in the biofiltration process and to make the treatment of VOCs by biotechnology more environmentally friendly. Additionally, the present work intends to increase people's awareness in regards to the control of bioaerosols, including microbial fragment present in bioaerosols.


Assuntos
Microbiologia do Ar/normas , Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Reatores Biológicos/microbiologia , Desinfecção/métodos , Aerossóis , Poluentes Atmosféricos/efeitos da radiação , Atmosfera/química , Biomassa , Química Verde , Humanos , Peróxido de Hidrogênio/química , Oxirredução , Ozônio/química , Raios Ultravioleta
5.
Am J Transl Res ; 11(2): 931-941, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899392

RESUMO

Melittin (Mel), a major component of venom of honey bee (Apismellifera), has various biological effects. Recent researches have reported the anti-tumor activity of Mel in various human cancers, including hepatocellular carcinoma (HCC). In this study, we aimed to further discuss the role of Mel in HCC and investigate the correlation of autophagy with the effect of Mel in HCC cells. Methyl thiazolyl tetrazolium (MTT) assay and flow cytometry were used to detect the viability and apoptosis of HCC cells, respectively. To examine the changes of autophagy in HCC cells treated with Mel, transmission electronmicroscope (TEM) and immunofluorescence detection were adopted. Finally, we used western blot method to detect the changes of pivotal proteins in autophagy and mitochondrial apoptotic pathways. The results of MTT assay and flow cytometry revealed that Mel could suppress the cell viability and promote the apoptosis of HCC cells. Autophagy could be induced by the treatment with Mel in HCC cells. The inhibition of autophagy by chloroquine (CQ) contributed to the enhanced anti-tumor effect of Mel, but autophagy induction by RAPA decreased Mel effect in HCC cells. Mel was closely associated with the expression of proteins in mitochondrial apoptotic pathway. In summary, Mel could induce the autophagy of HCC cells, and the autophagy might offer protection against apoptosis in HCC. Mel might suppress the tumor through activating mitochondrial apoptotic pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA