Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 896: 165226, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37392888

RESUMO

Arsenic and cadmium in rice grain are of growing concern in the global food supply chain. Paradoxically, the two elements have contrasting behaviors in soils, making it difficult to develop a strategy that can concurrently reduce their uptake and accumulation by rice plant. This study examined the combined impacts of watering (irrigation) schemes, different fertilizers and microbial populations on the bioaccumulation of arsenic and cadmium by rice as well as on rice grain yield. Compared to drain-flood and flood-drain treatments, continuously flooded condition significantly reduced the accumulation of cadmium in rice plant but the level of arsenic in rice grain remained above 0.2 mg/kg, which exceeded the China national food safety standard. Application of different fertilizers under continuously flooded condition showed that compared to inorganic fertilizer and biochar, manure addition effectively reduced the accumulation of arsenic over three to four times in rice grain and both elements were below the food safety standard (0.2 mg/kg) while significantly increasing the rice yield. Soil Eh was the critical factor in the bioavailability of cadmium, while the behavior of arsenic in rhizosphere was associated with the iron cycle. The results of the multi-parametric experiments can be used as a roadmap for low-cost and in-situ approach for producing safe rice without compromising the yield.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Cádmio/análise , Fertilizantes , Poluentes do Solo/análise , Solo
2.
Environ Sci Technol ; 57(14): 5978-5987, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36992570

RESUMO

Rapid urbanization drives increased emission of tire wear particles (TWPs) and the contamination of a transformation product derived from tire antioxidant, termed as N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), with adverse implications for terrestrial ecosystems and human health. However, whether and how 6PPD-Q could be formed during the aging of TWPs in soils remains poorly understood. Here, we examine the accumulation and formation mechanisms of 6PPD-Q during the aging of TWPs in soils. Our results showed that biodegradation predominated the fate of 6PPD-Q in soils, whereas anaerobic flooded conditions were conducive to the 6PPD-Q formation and thus resulted in a ∼3.8-fold higher accumulation of 6PPD-Q in flooded soils than wet soils after aging of 60 days. The 6PPD-Q formation in flooded soils was enhanced by Fe reduction-coupled 6PPD oxidation in the first 30 days, while the transformation of TWP-harbored environmentally persistent free radicals (EPFRs) to superoxide radicals (O2•-) under anaerobic flooded conditions further dominated the formation of 6PPD-Q in the next 30 days. This study provides significant insight into understanding the aging behavior of TWPs and highlights an urgent need to assess the ecological risk of 6PPD-Q in soils.


Assuntos
Benzoquinonas , Fenilenodiaminas , Solo , Áreas Alagadas , Humanos , Anaerobiose , Radicais Livres/química , Ferro/química , Fenilenodiaminas/química , Benzoquinonas/química , Oxirredução , Biodegradação Ambiental , Molhabilidade
3.
Environ Sci Technol ; 56(22): 16419-16427, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36223591

RESUMO

Microbially mediated iron redox processes are of great significance in the biogeochemical cycles of elements, which are often coupled with soil organic matter (SOM) in the environment. Although the influences of SOM fractions on individual reduction or oxidation processes have been studied extensively, a comprehensive understanding is still lacking. Here, using ferrihydrite, Shewanella oneidensis MR-1, and operationally defined SOM components including fulvic acid (FA), humic acid (HA), and humin (HM) extracted from black soil and peat, we explored the SOM-mediated microbial iron reduction and hydroxyl radical (•OH) production processes. The results showed that the addition of SOM inhibited the transformation of ferrihydrite to highly crystalline iron oxides. Although FA and HA increased Fe(II) production over four times on average due to complexation and their high electron exchange capacities, HA inhibited 30-43% of the •OH yield, while FA had no significant influence on it. Superoxide (O2•-) was the predominant intermediate in •OH production in the FA-containing system, while one- and two-electron transfer processes were concurrent in HA- and HM-containing systems. These findings provide deep insights into the multiple mechanisms of SOM in regulating microbially mediated iron redox processes and •OH production.


Assuntos
Radical Hidroxila , Ferro , Ferro/química , Compostos Férricos , Substâncias Húmicas/análise , Oxirredução , Solo/química
4.
Water Res ; 195: 116988, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714011

RESUMO

Microbial dissimilatory iron reduction and aerobic oxidation affect the biogeochemical cycles of many elements. Although the processes have been widely studied, the underlying mechanisms, and especially how the surface structures of iron oxides affect these redox processes, are poorly understood. Therefore, {001} facet-dominated hematite nanoplates (HNP) and {100} facet-dominated hematite nanorods (HNR) were used to explore the effects of surface structure on the microbial dissimilatory iron reduction and aerobic oxidation processes. During the reduction stage, the production of total Fe(II) normalized by specific surface area (SSA) was higher for HNP than HNR due to steric effects and the ligand-bound conformation of the connection between iron on different exposed facets and electron donors from microorganisms. However, during the aerobic oxidation stage, both the SSA- and Fe(II)-normalized reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and hydroxyl radical (•OH), were higher for HNR than HNP. Theoretical calculation results showed that the {100} facets exhibited a lower activation energy barrier for oxygen reduction reaction than {001} facets, supporting the experimental observation that {100} facet-dominated HNR had a higher ROS production efficiency than {001} facet-dominated HNP. These results indicated that surface characteristics not only mediated the microbial reduction of Fe(III) but also affected the aerobic oxidation of microbially reduced Fe(II). Accessibility of electron donors to surface iron atom determined the reduction of Fe(III), and activation energy barrier for oxygen reduction by surface Fe(II) dominated the ROS production during the redox processes. This study advances our understanding of the mechanisms through which ROS are produced by iron (oxyhydr)oxides during microbial dissimilatory iron reduction and aerobic oxidation processes.


Assuntos
Compostos Férricos , Shewanella , Peróxido de Hidrogênio , Ferro , Oxirredução , Espécies Reativas de Oxigênio
5.
Environ Sci Technol ; 54(2): 902-910, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31886656

RESUMO

The reduction of ferric iron (Fe(III)) to ferrous iron (Fe(II)) by dissimilatory iron-reducing bacteria is widespread in anaerobic environments. The oxidation of Fe(II) in aerobic environments has been found to produce hydroxyl radicals (•OH); however, the role of iron-reducing bacteria in the process has not been well understood. Here, Shewanella oneidensis MR-1-mediated redox transformation of four typical iron (oxyhydr)oxides and the production of reactive oxygen species were investigated. The results showed that the production of •OH was mainly determined by the insoluble Fe(II) formed during microbially mediated reduction and also mediated by the mineralogical phase. Moreover, this study for the first time observed the exogenetic iron-independent production of •OH by S. oneidensis MR-1, and the integrated pathway of •OH generation during the iron redox process was revealed. Superoxide (O2•-) was indicated as a key intermediate species that was produced by both abiotic and biotic pathways, and •OH was generated by both the exogenetic iron-dependent Fenton-like reaction and exogenetic iron-independent pathways. S. oneidensis MR-1 played a pivotal role in both the reduction of Fe(III) and the production of O2•-. These findings contribute substantially to our understanding of the generation mechanism of reactive oxygen species at oxidation-reduction boundaries in the environment.


Assuntos
Ferro , Shewanella , Compostos Férricos , Radical Hidroxila , Oxirredução , Óxidos
6.
Environ Sci Technol ; 52(20): 11660-11669, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30222318

RESUMO

Interactions between dissolved organic matter (DOM) and iron oxyhydroxides have important environmental and geochemical implications. The present study employed two hematite nanocrystals to investigate the adsorption and molecular fractionation of two typical humic substances (HSs) using electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). Hematite with a predominant exposure of {100} facets induced more pronounced adsorption and molecular fractionation of HSs than {001} facets, indicating that the interfacial adsorptive fractionation process of HSs was mediated by exposed facets of hematite. Further exploration of the surface OH groups of the two hematite nanocrystals confirms that the facet-mediated molecular fractionation of HSs was attributable to the abundance of singly iron-atom coordinated -OH sites on the hematite surfaces. Molecules with a high oxidation state and high aromaticity such as oxidized black carbon, polyphenol-like, and tannic-like compounds preferentially formed ligand-exchange complexes with singly coordinated -OH groups on the hematite surfaces, inducing the selective binding and molecular fractionation of HSs at the mineral-water interface. These results demonstrate that singly iron-atom coordinated -OH sites determine DOM adsorption and mediate molecular fractionation on hematite surfaces, and this contributes substantially to our understanding of the molecular mechanisms of iron oxyhydroxide-mediated molecular exchange of DOM in soils and/or sediments.


Assuntos
Substâncias Húmicas , Poluentes Químicos da Água , Adsorção , Fracionamento Químico , Compostos Férricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA