Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Thromb Haemost ; 100(6): 1146-54, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19132242

RESUMO

There is evidence that low-density lipoprotein (LDL) is modified by hydrolytic enzymes, and that the product (E-LDL) induces selective production of interleukin 8 (IL-8) in endothelial cells. Since nuclear factor-kappaB (NF-kappaB) is a major regulator of IL-8 transcription, we studied its activation in endothelial cells treated with E-LDL. Unexpectedly, the modified lipoprotein not only failed to activate NF-kappaB, but completely blocked its activation by tumour necrosis factor-alpha (TNF-alpha) in EA.hy926-cells, as assessed by electrophoretic mobility shift assays and immunofluorescence. Inhibition occurred upstream of NF-kappaB translocation, as inhibitor of NF-kappaB- (IkappaB)-phosphorylation was suppressed by E-LDL. In contrast to NF-kappaB, transcription factor activator protein-1 (AP-1) proved to be activated. Removal of free fatty acids present in E-LDL obliterated both activation of AP-1 and inhibition of NF-kappaB. Chromatin immunoprecipitation revealed that phosphorylated c-jun, but not NF-kappaBp65 bound to the natural IL-8 promoter. Production of endothelial IL-8 and simultaneous modulation of NF-kappaB in response to hydrolyzed LDL might serve to protect the vessel wall and promote silent removal of the insudated lipoprotein.


Assuntos
Células Endoteliais/metabolismo , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ácidos Graxos não Esterificados/metabolismo , Humanos , Hidrólise , Proteínas I-kappa B/metabolismo , Imidazóis/farmacologia , Inflamação/enzimologia , Interleucina-8/genética , Interleucina-8/metabolismo , Inibidor de NF-kappaB alfa , Fosforilação , Regiões Promotoras Genéticas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Piridinas/farmacologia , Esterol Esterase/metabolismo , Fatores de Tempo , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição RelA/metabolismo , Tripsina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Cell Microbiol ; 8(10): 1591-600, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16984414

RESUMO

Staphylococcal alpha-toxin is an archetypal killer protein that homo-oligomerizes in target cells to create small transmembrane pores. The membrane-perforating beta-barrel motif is a conserved attack element of cytolysins of Gram-positive and Gram-negative bacteria. Following the recognition that nucleated cells can survive membrane permeabilization, a profile of abundant transcripts was obtained in transiently perforated keratinocytes. Several immediate early genes were found to be upregulated, reminiscent of the cellular response to growth factors. Cell cycle analyses revealed doubling of S + G2/M phase cells 26 h post toxin treatment. Determination of cell counts uncovered that after an initial drop, numbers increased to exceed the controls after 2 days. A non-lytic alpha-toxin mutant remained without effect. The alpha-toxin pore is too small to allow egress of cytosolic growth factors, and evidence was instead obtained for growth signalling via the epidermal growth factor receptor (EGFR). Inhibition of the EGFR or of EGFR-proligand-processing blocked the mitogenic effect of alpha-toxin. Western blots with phospho-specific antibodies revealed activation of the EGFR, and of the adapter protein Shc. Immediate early response and proliferation upon transient plasma membrane pore formation by bacterial toxins may represent a novel facet of the complex interaction between pathogen and host.


Assuntos
Toxinas Bacterianas , Receptores ErbB/metabolismo , Proteínas Hemolisinas , Queratinócitos/metabolismo , Staphylococcus aureus/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Western Blotting , Ciclo Celular , Linhagem Celular , Linhagem Celular Transformada , Proliferação de Células , Citotoxinas/metabolismo , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Queratinócitos/citologia , Queratinócitos/microbiologia , Mitógenos/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Adaptadoras da Sinalização Shc , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Transfecção
3.
Arterioscler Thromb Vasc Biol ; 24(11): 2130-6, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15345515

RESUMO

OBJECTIVE: Functionally interactive proteases of the plasminogen/plasmin and the matrix metalloproteinase (MMP) system degrade and reorganize the extracellular matrix of the vessel wall in atherosclerosis. Here we investigated whether such proteases are able to confer atherogenic properties onto low density lipoprotein by nonoxidative modification. METHODS AND RESULTS: Similar to the recently described enzymatically-modified low-density lipoprotein (E-LDL), native LDL exposed to plasmin or matrix MMP-2 or MMP-9 and cholesterylester-hydrolase (CEH) showed extensive deesterification, with ratios of free cholesterol to total cholesterol rising to 0.8 compared with 0.2 in native LDL. When the ratio exceeded 0.6, both plasmin/CEH-LDL and MMP/CEH-LDL fused into larger particles. In parallel, they gained C-reactive protein-dependent complement-activating capacity. E-LDL produced with any protease/CEH combination was efficiently taken up by human macrophages, whereby marked induction of MMP-2 expression by E-LDL was observed. These in vitro findings had their in vivo correlates: urokinase-type plasminogen activator, MMP-2, and MMP-9 were detectable in both early and advanced human atherosclerotic lesions in colocalization with E-LDL. CONCLUSIONS: Plasmin and MMP-2/MMP-9 may not only be involved in remodeling of the extracellular matrix in progressing plaques, but they may also be involved in lipoprotein modification during genesis and progression of atherosclerotic lesions.


Assuntos
Arteriosclerose/enzimologia , Fibrinolisina/fisiologia , Lipoproteínas LDL/metabolismo , Metaloproteinase 2 da Matriz/fisiologia , Metaloproteinase 9 da Matriz/fisiologia , Adolescente , Adulto , Idoso , Anticorpos Monoclonais/metabolismo , Arteriosclerose/metabolismo , Western Blotting/métodos , Proteína C-Reativa/fisiologia , Células Cultivadas , Ativação do Complemento/fisiologia , Ensaio de Atividade Hemolítica de Complemento/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Fibrinolisina/metabolismo , Humanos , Lipoproteínas LDL/imunologia , Macrófagos/enzimologia , Macrófagos/metabolismo , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/enzimologia , Dodecilsulfato de Sódio/metabolismo , Esterol Esterase/metabolismo , Tripsina/metabolismo
4.
Thromb Haemost ; 91(4): 639-45, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15045123

RESUMO

Atherosclerosis is widely regarded as a chronic inflammatory disease that develops as a consequence of entrapment of low density lipoprotein (LDL) in the arterial intima. Native LDL lacks inflammatory properties, so the lipoprotein must undergo biochemical alterations in order to become atherogenic. Modification is commonly regarded as being dangerous because it bestows inflammatory properties onto the lipoprotein. Most current models consider oxidation to be the decisive modifying event. Here, we submit a different concept for discussion. We propose that modification of tissue-entrapped LDL is required because it enables the lipoprotein to signal to the immune system and effect its own removal. Oxidation would be too haphazard to fulfill this function. We summarize the evidence indicating that modification occurs through the action of ubiquitous hydrolytic enzymes. Enzymatically remodeled LDL binds C-reactive protein. C-reactive protein bound to remodeled LDL not only activates complement but also regulates it by inhibiting activation of the terminal complement cascade. Simultaneously, epitopes are exposed to enable the lipoprotein to be recognized and taken up by macrophages. The high density lipoprotein-dependent reverse transport pathway concludes the sequence of events that clear tissues of cholesterol in a non-inflammatory manner very similar to what has been described for the removal of apoptotic cells. It is proposed that these physiological processes occur throughout life without harm, pathology evolving only when the machinery suffers overload. Detrimental effects are then evoked primarily by the unreigned activation of complement, macrophages, and other effectors of the immune system in the lesions.


Assuntos
Arteriosclerose/imunologia , Lipoproteínas LDL/metabolismo , Arteriosclerose/etiologia , Colesterol/metabolismo , Ativação do Complemento , Humanos , Sistema Imunitário/fisiologia , Lipoproteínas LDL/imunologia , Macrófagos/imunologia
5.
Arterioscler Thromb Vasc Biol ; 23(4): 661-7, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12615673

RESUMO

OBJECTIVE: Modification with proteases and cholesterylesterase transforms LDL to a moiety that resembles lipoproteins isolated from atherosclerotic lesions and possesses atherogenic properties. To identify changes in monocyte-derived foam cells laden with enzymatically modified LDL (E-LDL), we compared patterns of the most abundant transcripts in these cells after incubation with LDL or E-LDL. METHODS AND RESULTS: Serial analyses of gene expression (SAGE) libraries were constructed from human monocytes after treatment with LDL or E-LDL. Several tags were differentially expressed in LDL-treated versus E-LDL-treated cells, whereby marked selective induction by E-LDL of cathepsin H was conspicuous. We show that cathepsin H is expressed in atherosclerotic lesions in colocalization with E-LDL. Furthermore, we demonstrate that LDL modified with cathepsin H and cholesterylesterase can confer onto LDL the capacity to induce macrophage foam cell formation and to induce cathepsin H. CONCLUSIONS: Cathepsin H could contribute to the transformation of LDL to an atherogenic moiety; the process might involve a self-sustaining amplifying circle.


Assuntos
Catepsinas/fisiologia , Doença da Artéria Coronariana/metabolismo , Cisteína Endopeptidases/fisiologia , Células Espumosas/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Catepsina H , Catepsinas/biossíntese , Catepsinas/genética , Colesterol/metabolismo , Doença da Artéria Coronariana/patologia , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/genética , Células Espumosas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Biblioteca Gênica , Humanos , Lipoproteínas LDL/efeitos dos fármacos , Esterol Esterase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA