Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563227

RESUMO

The liver plays a critical role in metabolic activity and is the body's first immune barrier, and maintaining liver health is particularly important for poultry production. MicroRNAs (miRNAs) are involved in a wide range of biological activities due to their capacity as posttranscriptional regulatory elements. A growing body of research indicates that miR-21-5p plays a vital role as a modulator of liver metabolism in various species. However, the effect of miR-21-5p on the chicken liver is unclear. In the current study, we discovered that the fatty liver had high levels of miR-21-5p. Then the qPCR, Western blot, flow cytometry, enzyme-linked immunosorbent assay, dual-luciferase, and immunofluorescence assays were, respectively, used to determine the impact of miR-21-5p in the chicken liver, and it turned out that miR-21-5p enhanced lipogenesis, oxidative stress, and inflammatory responses, which ultimately induced hepatocyte apoptosis. Mechanically, we verified that miR-21-5p can directly target nuclear factor I B (NFIB) and kruppel-like factor 3 (KLF3). Furthermore, our experiments revealed that the suppression of NFIB promoted apoptosis and inflammation, and the KLF3 inhibitor accelerated lipogenesis and enhanced oxidative stress. Furthermore, the cotransfection results suggest that the PI3K/AKT pathway is also involved in the process of miRNA-21-5p-mediate liver metabolism regulation. In summary, our study demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting NFIB and KLF3 to suppress the PI3K/AKT signal pathway in chicken.


miR-21-5p is a typical noncoding RNA that could inhibit messenger RNA expression by targeting the 3ʹ-untranslated region to participate in fatty liver-related disease formation and progression. We demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting nuclear factor I B and kruppel-like factor 3 to suppress the PI3K/AKT signal pathway in chicken. This research established the regulatory network mechanisms of miR-21-5p in chicken hepatic lipogenesis and fatty liver syndrome.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição NFI/metabolismo , Galinhas/genética , Galinhas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipogênese/genética , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado/metabolismo , Apoptose , Inflamação/metabolismo , Inflamação/veterinária , Proliferação de Células
2.
Theriogenology ; 192: 97-108, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36084389

RESUMO

The proliferation and steroid hormone synthesis of granulosa cells (GCs) are essential for ovarian follicle growth and ovulation, which are necessary to support the normal function of the follicle. Numerous studies suggest that miRNAs play key roles in this process. In this study, we report a novel role for miR-10a-5p that inhibits ovarian GCs proliferation and progesterone (P4) synthesis in chicken. Specifically, we found that miR-10a-5p significantly decreased the P4 secretion by quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot. Moreover, we observed that miR-10a-5p can inhibit the proliferation of chicken GCs through the investigation of cell proliferation gene expression, cell counting kit 8 (CCK-8), cell cycle progression, and 5-ethynyl-2'-deoxyuridine (EdU) assay. Then we screened a target gene MAPRE1 of miR-10a-5p, which can promote P4 synthesis and proliferation of GCs. To explore how miR-10a-5p affects cell cycle by MAPRE1, we investigated the interaction between MAPRE1 and cyclin-dependent kinase 2 (CDK2) by Co-Immunoprecipitation (Co-IP), and then we found that MAPRE1 can form a complex with CDK2. In addition, miR-10a-5p was found to inhibit CDK2 expression by repressing the expression of MAPRE1. Overall, our results indicate that miR-10a-5p regulates the proliferation and P4 synthesis of chicken GCs by targeting MAPRE1 to suppress CDK2.


Assuntos
MicroRNAs , Progesterona , Animais , Apoptose/genética , Proliferação de Células/genética , Galinhas/genética , Galinhas/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Feminino , Células da Granulosa/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Progesterona/metabolismo
3.
Front Immunol ; 13: 925256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874672

RESUMO

The growing period is a critical period for growth and development in laying hens. During this period, chicks grow rapidly, but are accompanied by unstable digestive function, incomplete organ development, and high mortality. Small peptide, a feed additive, which has been proved to promote intestinal development and immunity in poultry. In order to elucidate the effects of small peptides on growth performance, immunity, antioxidant capacity, and intestinal health of growing laying hens, a total of 900 Tianfu green shell laying hens (1-day-old) were randomly divided into 5 treatments with 6 replicates of 30 birds each in this 18-week trial. Dietary treatments included a corn-soybean meal-based diet supplemented with 0 g/kg, 1.5 g/kg, 3.0 g/kg, 4.5 g/kg and 6.0 g/kg small peptide, respectively. The results showed that the supplementation of small peptides significantly increased growth rate (P<0.05) in laying hens, as well as elevated the serum immunoglobulins (P<0.05) and antioxidant indices (P<0.05), however, it decreased inflammation parameters (P<0.05). The supplementation of small peptides enhanced the intestinal function by promoting gut development (P<0.05) and improving gut integrity (P<0.05), barrier function (P<0.05) and the diversity of gut microbiota (P<0.05) in the growing hens. The best performance was recorded among the hens fed 4.5 g/kg level of small peptide. Taken together, these results showed that small peptide supplementation could improve the economic value of growing hens by promoting growth rate, disease resistance, and the optimal amount of addition for Tianfu green shell laying hens was 4.5 g/kg.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Ração Animal/análise , Animais , Antioxidantes/farmacologia , Suplementos Nutricionais , Feminino , Peptídeos/farmacologia
4.
Toxins (Basel) ; 13(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802158

RESUMO

Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin found in several food commodities worldwide. ZEA causes reproductive disorders, genotoxicity, and testicular toxicity in animals. However, little is known about the functions of apoptosis and autophagy after exposure to ZEA in granulosa cells. This study investigated the effects of ZEA on chicken granulosa cells. The results show that ZEA at different doses significantly inhibited the growth of chicken granulosa cells by inducing apoptosis. ZEA treatment up-regulated Bax and downregulated Bcl-2 expression, promoted cytochrome c release into the cytosol, and triggered mitochondria-mediated apoptosis. Consequently, caspase-9 and downstream effector caspase-3 were activated, resulting in chicken granulosa cells apoptosis. ZEA treatment also upregulated LC3-II and Beclin-1 expression, suggesting that ZEA induced a high level of autophagy. Pretreatment with chloroquine (an autophagy inhibitor) and rapamycin (an autophagy inducer) increased and decreased the rate of apoptosis, respectively, in contrast with other ZEA-treated groups. Autophagy delayed apoptosis in the ZEA-treated cells. Therefore, autophagy may prevent cells from undergoing apoptosis by reducing ZEA-induced cytotoxicity. In addition, our results further show that the autophagy was stimulated by ZEA through PI3K-AKT-mTOR and MAPK signaling pathways in chicken granulosa cells.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Zearalenona/toxicidade , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Células Cultivadas , Galinhas , Feminino , Células da Granulosa/enzimologia , Células da Granulosa/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Transdução de Sinais
5.
Cell Tissue Res ; 381(3): 479-492, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32696215

RESUMO

Immunoglobulin superfamily containing leucine-rich repeat (Islr) contains an Ig-like domain, an LRR motif, and a transmembrane domain and is highly expressed in various chicken tissues. Although Islr has known roles in muscle regeneration, its role in the regulation of muscle atrophy has not been studied. In this study, we constructed Islr-silenced or Islr-overexpressed myoblasts to investigate its role during the differentiation of myoblasts into myotubes. The results showed that Islr was highly expressed in chicken skeletal muscle tissue and regulated myoblast differentiation, but not proliferation. Islr regulated the expression of atrophy-related genes including atrogin-1 and MuRF-1, and could rescue dexamethasone-induced atrophy in myoblasts and myotubes. Western blot analysis indicated that Islr participates in myoblast atrophy through IGF/PI3K/AKT-FOXO signaling. Meanwhile, the expression of caspase-8 and caspase-9 increased in Islr-silenced groups, indicating its role in cell viability. Taken together, these data suggested that Islr plays an important role in myoblasts differentiation, and which can alleviate skeletal muscle atrophy and prevents muscle cell apoptosis via IGF/PI3K/AKT-FOXO signaling pathway.


Assuntos
Imunoglobulinas/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Atrofia Muscular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Transdução de Sinais , Transfecção
6.
Int J Mol Sci ; 21(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380777

RESUMO

MicroRNAs (miRNAs) are evolutionarily conserved, small noncoding RNAs that play critical post-transcriptional regulatory roles in skeletal muscle development. Chicken is an optimal model to study skeletal muscle formation because its developmental anatomy is similar to that of mammals. In this study, we identified potential miRNAs in the breast muscle of broilers and layers at embryonic day 10 (E10), E13, E16, and E19. We detected 1836 miRNAs, 233 of which were differentially expressed between broilers and layers. In particular, miRNA-200a-3p was significantly more highly expressed in broilers than layers at three time points. In vitro experiments showed that miR-200a-3p accelerated differentiation and proliferation of chicken skeletal muscle satellite cells (SMSCs) and inhibited SMSCs apoptosis. The transforming growth factor 2 (TGF-ß2) was identified as a target gene of miR-200a-3p, and which turned out to inhibit differentiation and proliferation, and promote apoptosis of SMSCs. Exogenous TGF-ß2 increased the abundances of phosphorylated SMAD2 and SMAD3 proteins, and a miR-200a-3p mimic weakened this effect. The TGFß2 inhibitor treatment reduced the promotional and inhibitory effects of miR-200a-3p on SMSC differentiation and apoptosis, respectively. Our results indicate that miRNAs are abundantly expressed during embryonic skeletal muscle development, and that miR-200a-3p promotes SMSC development by targeting TGF-ß2 and regulating the TGFß2/SMAD signaling pathway.


Assuntos
MicroRNAs/genética , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Apoptose/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , RNA Mensageiro/genética
7.
3 Biotech ; 10(4): 171, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32206505

RESUMO

The Src homology 3 and cysteine-rich domain 3 gene (STAC3) encodes a protein containing both a cysteine-rich domain and two Src (sarcoma) homology 3 domains (SH3). STAC3 is specifically expressed in skeletal muscle and plays an important role in skeletal muscle development, but the explicit sequence and function of chicken SATC3 remain unknown. In the current study, we found the full-length chicken STAC3 cDNA to be 1383 bp long, with a 1092 bp open reading frame that harbors one cysteine-rich C1 domain and two SH3 domains. Tissue distribution analysis reveals chicken STAC3 mRNA only in skeletal muscle among 12 chicken tissues examined by reverse transcription PCR. Both cholecystokinin octapeptide analysis and a 5-ethynyl-2'-deoxyuridine assay suggest that neither STAC3 overexpression nor knockdown has any effect on the proliferation of chicken skeletal muscle satellite cells. However, STAC3 knockdown significantly increases the mRNA expression of MyoG, MyoD, Mb, and MyHC, and the protein abundance of MyHC and MyoG, whereas the opposite result is found in STAC3 overexpressed cells. We conclude that the STAC3 gene is expressed specifically in skeletal muscle and is a negative regulator of skeletal muscle satellite cell differentiation in chicken.

8.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121275

RESUMO

MicroRNAs are evolutionarily conserved, small non-coding RNAs that play critical post-transcriptional regulatory roles in skeletal muscle development. We previously found that miR-9-5p is abundantly expressed in chicken skeletal muscle. Here, we demonstrate a new role for miR-9-5p as a myogenic microRNA that regulates skeletal muscle development. The overexpression of miR-9-5p significantly inhibited the proliferation and differentiation of skeletal muscle satellite cells (SMSCs), whereas miR-9-5p inhibition had the opposite effect. We show that insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is a target gene of miR-9-5p, using dual-luciferase assays, RT-qPCR, and Western Blotting, and that it promotes proliferation and differentiation of SMSCs. In addition, we found that IGF2BP3 regulates IGF-2 expression, using overexpression and knockdown studies. We show that Akt is activated by IGF2BP3 and is essential for IGF2BP3-induced cell development. Together, our results indicate that miR-9-5p could regulate the proliferation and differentiation of myoblasts by targeting IGF2BP3 through IGF-2 and that this activity results in the activation of the PI3K/Akt signaling pathway in skeletal muscle cells.


Assuntos
Diferenciação Celular/genética , Galinhas/genética , Fator de Crescimento Insulin-Like II/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células Satélites de Músculo Esquelético/citologia , Animais , Sequência de Bases , Linhagem Celular , Proliferação de Células/genética , MicroRNAs/genética , Modelos Biológicos , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais
9.
Toxins (Basel) ; 12(2)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013230

RESUMO

T-2 toxin is type A trichothecenes mycotoxin, which produced by fusarium species in cereal grains. T-2 toxin has been shown to induce a series of toxic effects on the health of human and animal, such as immunosuppression and carcinogenesis. Previous study has proven that T-2 toxin caused hepatotoxicity in chicken, but the regulatory mechanism is unclear. In the present study, we assessed the toxicological effect of T-2 toxin on apoptosis and autophagy in hepatocytes. The total of 120 1-day-old healthy broilers were allocated randomly into four groups and reared for 21 day with complete feed containing 0 mg/kg, 0.5 mg/kg, 1 mg/kg or 2 mg/kg T-2 toxin, respectively. The results showed that the apoptosis rate and pathological changes degree hepatocytes were aggravated with the increase of T-2 toxin. At the molecular mechanism level, T-2 toxin induced mitochondria-mediated apoptosis by producing reactive oxygen species, promoting cytochrome c translocation between the mitochondria and cytoplasm, and thus promoting apoptosomes formation. Meanwhile, the expression of the autophagy-related protein, ATG5, ATG7 and Beclin-1, and the LC3-II/LC3-I ratio were increased, while p62 was downregulated, suggesting T-2 toxin caused autophagy in hepatocytes. Further experiments demonstrated that the PI3K/AKT/mTOR signal may be participated in autophagy induced by T-2 toxin in chicken hepatocytes. These data suggest a possible underlying molecular mechanism for T-2 toxin that induces apoptosis and autophagy in chicken hepatocytes.


Assuntos
Hepatócitos/efeitos dos fármacos , Toxina T-2/toxicidade , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Galinhas , Hepatócitos/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979369

RESUMO

CSRP3/MLP (cysteine-rich protein 3/muscle Lim protein), a member of the cysteine-rich protein family, is a muscle-specific LIM-only factor specifically expressed in skeletal muscle. CSRP3 is critical in maintaining the structure and function of normal muscle. To investigate the mechanism of disease in CSRP3 myopathy, we performed siRNA-mediated CSRP3 knockdown in chicken primary myoblasts. CSRP3 silencing resulted in the down-regulation of the expression of myogenic genes and the up-regulation of atrophy-related gene expressions. We found that CSRP3 interacted with LC3 protein to promote the formation of autophagosomes during autophagy. CSRP3-silencing impaired myoblast autophagy, as evidenced by inhibited autophagy-related ATG5 and ATG7 mRNA expression levels, and inhibited LC3II and Beclin-1 protein accumulation. In addition, impaired autophagy in CSRP3-silenced cells resulted in increased sensitivity to apoptosis cell death. CSRP3-silenced cells also showed increased caspase-3 and caspase-9 cleavage. Moreover, apoptosis induced by CSRP3 silencing was alleviated after autophagy activation. Together, these results indicate that CSRP3 promotes the correct formation of autophagosomes through its interaction with LC3 protein, which has an important role in skeletal muscle remodeling and maintenance.


Assuntos
Autofagossomos/metabolismo , Autofagia/genética , Proteínas com Domínio LIM/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Mioblastos/metabolismo , Animais , Apoptose/genética , Autofagossomos/ultraestrutura , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Caspases/metabolismo , Células Cultivadas , Embrião de Galinha , Galinhas , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Ontologia Genética , Inativação Gênica , Proteínas com Domínio LIM/genética , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Distrofias Musculares/genética , Mioblastos/ultraestrutura , RNA Interferente Pequeno , RNA-Seq
11.
Biomed Res Int ; 2019: 5493870, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886226

RESUMO

T-2 toxin is a trichothecene mycotoxin produced by fungi which are known to contaminate cereals, especially in wheat and corn. T-2 toxin is known to cause a range of toxic effects in humans and animals, including immunosuppression and carcinogenesis. Although the effects of T-2 toxin on condition of chickens' spleens have been reported, there has been no systematic study of damage to the spleen of broiler chickens exposed to T-2 toxin. The purpose of the present study was to assess the effects of T-2 toxin on pathology, rates of apoptosis, oxidative stress, and T-lymphocyte subsets in the spleen of broiler chickens. One hundred and twenty male broiler chickens were randomly assigned to one of four groups (30 birds per group), fed 0 mg/kg (control), 0.5 mg/kg, 1 mg/kg, or 2 mg/kg T-2 toxin, respectively. After 21 days, chickens exposed to T-2 toxin demonstrated decreased relative weight and size of the spleen, increased percentage of apoptotic splenocytes, and evident lesions. Concentrations of reactive oxygen species and MDA content increased in splenocytes during T-2 toxin treatments, whereas activities of SOD, CAT, and GSH-PX decreased. The ratio of CD4+/CD8+ T cells also decreased as the dose of T-2 toxin increased. Overall, these results suggest that T-2 toxin causes oxidative stress, leading to increased rates of splenocyte apoptosis and might impair the splenic immune function of broiler chickens.


Assuntos
Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Baço , Toxina T-2/toxicidade , Animais , Células Cultivadas , Galinhas , Relação Dose-Resposta a Droga , Masculino , Baço/citologia , Baço/efeitos dos fármacos , Baço/patologia
12.
Biomed Res Int ; 2019: 6902906, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380433

RESUMO

FOXO3, which encodes the transcription factor forkhead box O-3 (FoxO3), is a member of the FOXO subfamily of the forkhead box (FOX) family. FOXO3 can be negatively regulated by its phosphorylation by the PI3K/Akt signaling pathway and ultimately drives apoptosis when activated. In mammalian ovaries, the FOXO3 protein regulates atresia and follicle growth by promoting apoptosis of ovarian granulosa cells. Nonetheless, the specific effects of the FOXO3 protein on granulosa apoptosis of avian ovaries have not been elucidated. Therefore, we studied FOXO3 expression in follicles with different organization and at all hierarchical levels of chicken follicles. Via an immunofluorescence assay, the chicken follicular theca at all hierarchical levels were found to be strongly stained with an anti-FOXO3 antibody. In chicken primary ovarian granulosa cells, mRNA levels of proapoptotic factors BNIP3 and BCL2L11 decreased in the absence of FOXO3, and so did PARP-1 and cleaved caspase 3 protein levels. After treatment with a recombinant FOXO3 protein, PARP-1 and caspase 3 protein levels increased, along with mRNA levels of Bnip3 and BCL2L11 (significantly, p<0.05). In addition, FOXO3 was downregulated in chicken granulosa cells when different estradiol or FSH concentrations were applied. In conclusion, FOXO3 is expressed in chicken reproductive tissues, including follicles and ovarian granulosa cells, and promotes apoptosis of chicken ovarian granulosa cells.


Assuntos
Apoptose/genética , Galinhas/genética , Proteína Forkhead Box O3/genética , Folículo Ovariano/metabolismo , Animais , Proteína 11 Semelhante a Bcl-2/genética , Caspase 3/genética , Galinhas/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Células da Granulosa/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Poli(ADP-Ribose) Polimerase-1/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética
13.
Gene ; 707: 36-43, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30930226

RESUMO

Muscle LIM protein (MLP/CSRP3/CRP3) is a microtubule-associated protein preferentially expressed in cardiac and skeletal muscle and has a central role during muscle development and for architectural maintenance of muscle cells. LIM-domain proteins act as both modulators and downstream targets of TGF-ß signaling, which is well documented to negatively regulate differentiation of myogenic precursor cells or myoblasts. Herein, we determined whether CSRP3 regulates chicken satellite cell proliferation and differentiation in vitro, and examined its mechanism of action by focusing on the TGF-ß signaling pathway. Interference of CSRP3 mRNA expression had no effect on the proliferation of satellite cells, but significantly inhibited satellite cell differentiation into myotubes at 24, 48, and 72 h after initiation of differentiation. However, CSRP3 overexpression did not affect the proliferation or differentiation of satellite cells. Moreover, knockdown of CSRP3 caused up-regulation of TGF-ß and Smad3 mRNA and protein levels. The phosphorylation of Smad3 in CSRP3-knockdown cells was greater than that in wild-type cells at 24, 48, and 72 h after initiation of differentiation. Collectively, knockdown of CSRP3 suppressed chicken satellite cell differentiation by regulating Smad3 phosphorylation in the TGF-ß signaling pathway. Our results indicate that CSRP3 might play an important role in promoting satellite cell differentiation in chicken.


Assuntos
Proteínas com Domínio LIM/genética , Proteínas Musculares/genética , Células Satélites de Músculo Esquelético/citologia , Proteína Smad3/genética , Proteína Smad3/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Galinhas , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Fosforilação , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA