Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncol Rep ; 49(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633146

RESUMO

Structural alterations of collagen impact signaling that helps control tumor progression and the responses to therapeutic intervention. Integrins represent a class of receptors that include members that mediate collagen signaling. However, a strategy of directly targeting integrins to control tumor growth has demonstrated limited activity in the clinical setting. New molecular understanding of integrins have revealed that these receptors can regulate both pro­ and anti­tumorigenic functions in a cell type­dependent manner. Therefore, designing strategies that block pro­tumorigenic signaling, without impeding anti­tumorigenic functions, may lead to development of more effective therapies. In the present study, evidence was provided for a novel signaling cascade in which ß3­integrin­mediated binding to a secreted RGDKGE­containing collagen fragment stimulates an autocrine­like signaling pathway that differentially governs the activity of both YAP and (protein kinase­A) PKA, ultimately leading to alterations in the levels of immune checkpoint molecule PD­L1 by a proteasome dependent mechanism. Selectively targeting this collagen fragment, reduced nuclear YAP levels, and enhanced PKA and proteasome activity, while also exhibiting significant antitumor activity in vivo. The present findings not only provided new mechanistic insight into a previously unknown autocrine­like signaling pathway that may provide tumor cells with the ability to regulate PD­L1, but our findings may also help in the development of more effective strategies to control pro­tumorigenic ß3­integrin signaling without disrupting its tumor suppressive functions in other cellular compartments.


Assuntos
Antígeno B7-H1 , Colágeno , Integrinas , Neoplasias , Fragmentos de Peptídeos , Complexo de Endopeptidases do Proteassoma , Humanos , Antígeno B7-H1/metabolismo , Colágeno/química , Colágeno/metabolismo , Integrinas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
2.
J Biomed Opt ; 26(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34159763

RESUMO

SIGNIFICANCE: Morphological collagen signatures are important for tissue function, particularly in the tumor microenvironment. A single algorithmic framework with quantitative, multiscale morphological collagen feature extraction may further the use of collagen signatures in understanding fundamental tumor progression. AIM: A modification of the 2D wavelet transform modulus maxima (WTMM) anisotropy method was applied to both digitally simulated collagen fibers and second-harmonic-generation imaged collagen fibers of mouse skin to calculate a multiscale anisotropy factor to detect collagen fiber organization. APPROACH: The modified 2D WTMM anisotropy method was initially validated on synthetic calibration images to establish the robustness and sensitivity of the multiscale fiber organization tool. Upon validation, the algorithm was applied to collagen fiber organization in normal wild-type skin, melanoma stimulated skin, and integrin α10KO skin. RESULTS: Normal wild-type skin collagen fibers have an increased anisotropy factor at all sizes scales. Interestingly, the multiscale anisotropy differences highlight important dissimilarities between collagen fiber organization in normal wild-type skin, melanoma stimulated, and integrin α10KO skin. At small scales (∼2 to 3 µm), the integrin α10KO skin was vastly different than normal skin (p-value ∼ 10 - 8), whereas the melanoma stimulated skin was vastly different than normal at large scales (∼30 to 40 µm, p-value ∼ 10 - 15). CONCLUSIONS: This objective computational collagen fiber organization algorithm is sensitive to collagen fiber organization across multiple scales for effective exploration of collagen morphological alterations associated with melanoma and the lack of α10 integrin binding.


Assuntos
Microscopia de Geração do Segundo Harmônico , Animais , Anisotropia , Colágeno , Diagnóstico por Imagem , Camundongos , Microscopia de Polarização
3.
Am J Pathol ; 191(3): 527-544, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33307038

RESUMO

The growth and spread of malignant tumors, such as ovarian carcinomas, are governed in part by complex interconnected signaling cascades occurring between stromal and tumor cells. These reciprocal cross-talk signaling networks operating within the local tissue microenvironment may enhance malignant tumor progression. Understanding how novel bioactive molecules generated within the tumor microenvironment regulate signaling pathways in distinct cellular compartments is critical for the development of more effective treatment paradigms. Herein, we provide evidence that blocking cellular interactions with an RGDKGE-containing collagen peptide that selectively binds integrin ß3 on ovarian tumor cells enhances the phosphorylation of the hippo effector kinase large tumor suppressor kinase-1 and reduces nuclear accumulation of yes-associated protein and its target gene c-Myc. Selectively targeting this RGDKGE-containing collagen fragment inhibited ovarian tumor growth and the development of ascites fluid in vivo. These findings suggest that this bioactive collagen fragment may represent a previously unknown regulator of the hippo effector kinase large tumor suppressor kinase-1 and regulate ovarian tumor growth by a yes-associated protein-dependent mechanism. Taken together, these data not only provide new mechanistic insight into how a unique collagen fragment may regulate ovarian cancer, but in addition may help provide a useful new alternative strategy to control ovarian tumor progression based on selectively disrupting a previously unappreciated signaling cascade.


Assuntos
Biomarcadores Tumorais/metabolismo , Colágeno/metabolismo , Neoplasias Ovarianas/patologia , Fragmentos de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-yes/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-yes/genética , Transdução de Sinais , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Cell Physiol ; 235(12): 9005-9020, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32400053

RESUMO

Structural remodeling of the extracellular matrix is a well-established process associated with tumor growth and metastasis. Tumor and stromal cells that compose the tumor mass function cooperatively to promote the malignant phenotype in part by physically interacting with intact and structurally altered matrix proteins. To this end, collagen represents the most abundant component of the extracellular matrix and is known to control the behavior of histologically distinct tumor types as well as a diversity of stromal cells. Although a significant molecular understanding has been established concerning how cellular interactions with intact collagen govern signaling pathways that control tumor progression, considerably less is known concerning how interactions with cryptic or hidden regions within remodeled collagen may selectively alter signaling cascades, or whether inhibition of these cryptic signaling pathways may represent clinically effective therapeutic strategies. Here, we review the emerging evidence concerning the possible mechanisms for the selective generation of cryptic or hidden elements within collagen and their potential cell surface receptors that may facilitate signal transduction. We discuss the concept that cellular communication links between cell surface receptors and these cryptic collagen elements may serve as functional signaling hubs that coordinate multiple signaling pathways operating within both tumor and stromal cells. Finally, we provide examples to help illustrate the possibility that direct targeting of these unique cryptic signaling hubs may lead to the development of more effective therapeutic strategies to control tumor growth and metastasis.


Assuntos
Colágeno/metabolismo , Metástase Neoplásica/patologia , Neoplasias/metabolismo , Neovascularização Patológica/patologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Humanos
5.
Am J Pathol ; 188(10): 2356-2368, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30118657

RESUMO

Stromal components not only help form the structure of neoplasms such as melanomas, but they also functionally contribute to their malignant phenotype. Thus, uncovering signaling pathways that integrate the behavior of both tumor and stromal cells may provide unique opportunities for the development of more effective strategies to control tumor progression. In this regard, extracellular matrix-mediated signaling plays a role in coordinating the behavior of both tumor and stromal cells. Here, evidence is provided that targeting a cryptic region of the extracellular matrix protein collagen (HU177 epitope) inhibits melanoma tumor growth and metastasis and reduces angiogenesis and the accumulation of α-SMA-expressing stromal cell in these tumors. The current study suggests that the ability of the HU177 epitope to control melanoma cell migration and metastasis depends on the transcriptional coactivator Yes-associated protein (YAP). Melanoma cell interactions with the HU177 epitope promoted nuclear accumulation of YAP by a cyclin-dependent kinase-5-associated mechanism. These findings provide new insights into the mechanism by which the anti-HU177 antibody inhibits metastasis, and uncovers an unknown signaling pathway by which the HU177 epitope selectively reprograms melanoma cells by regulating nuclear localization of YAP. This study helps to define a potential new therapeutic strategy to control melanoma tumor growth and metastasis that might be used alone or in combination with other therapeutics.


Assuntos
Movimento Celular/efeitos dos fármacos , Colágeno/fisiologia , Epitopos/fisiologia , Melanoma/fisiopatologia , Neoplasias Cutâneas/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inibidores da Angiogênese/farmacologia , Anticorpos Anti-Idiotípicos/farmacologia , Anticorpos Anti-Idiotípicos/fisiologia , Proliferação de Células/fisiologia , Colágeno/imunologia , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/metabolismo , Humanos , Melanoma/patologia , Metástase Neoplásica , Neovascularização Patológica/imunologia , Fosfoproteínas/metabolismo , Fosforilação/fisiologia , Neoplasias Cutâneas/patologia , Células Estromais/fisiologia , Talina/metabolismo , Fatores de Transcrição , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
6.
Oncotarget ; 8(5): 8900-8909, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-27823972

RESUMO

γδ T cells are one of the three immune cell types that express antigen receptors. They contribute to lymphoid antitumor surveillance and bridge the gap between innate and adaptive immunity. γδ T cells have the capacity of secreting abundant cytokines and exerting potent cytotoxicity against a wide range of cancer cells. γδ T cells exhibit important roles in immune-surveillance and immune defense against tumors and have become attractive effector cells for cancer immunotherapy. γδ T cells mediate anti-tumor therapy mainly by secreting pro-apoptotic molecules and inflammatory cytokines, or through a TCR-dependent pathway. Recently, γδ T cells are making their way into clinical trials. Some clinical trials demonstrated that γδ T cell-based immunotherapy is well tolerated and efficient. Despite the advantages that could be exploited, there are obstacles have to be addressed for the development of γδ T cell immunotherapies. Future direction for immunotherapy using γδ T cells should focus on overcoming the side effects of γδ T cells and exploring better antigens that help stimulating γδ T cell expansion in vitro.


Assuntos
Imunoterapia Adotiva/métodos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/transplante , Animais , Proliferação de Células , Citocinas/imunologia , Citotoxicidade Imunológica , Humanos , Ativação Linfocitária , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Evasão Tumoral
7.
PLoS One ; 8(6): e65344, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762348

RESUMO

The Snail gene family encodes zinc finger-containing transcriptional repressor proteins. Three members of the Snail gene family have been described in mammals, encoded by the Snai1, Snai2, and Snai3 genes. The function of the Snai1 and Snai2 genes have been studied extensively during both vertebrate embryogenesis and tumor progression and metastasis, and play critically important roles during these processes. However, little is known about the function of the Snai3 gene and protein. We describe here generation and analysis of Snai3 conditional and null mutant mice. We also generated an EYFP-tagged Snai3 null allele that accurately reflects endogenous Snai3 gene expression, with the highest levels of expression detected in thymus and skeletal muscle. Snai3 null mutant homozygous mice are viable and fertile, and exhibit no obvious phenotypic defects. These results demonstrate that Snai3 gene function is not essential for embryogenesis in mice.


Assuntos
Desenvolvimento Embrionário/genética , Efeito Fundador , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo , Timo/metabolismo , Fatores de Transcrição/genética , Animais , Embrião de Mamíferos , Homozigoto , Camundongos , Camundongos Knockout , Músculo Esquelético/embriologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail , Timo/embriologia , Fatores de Transcrição/metabolismo
8.
J Asian Nat Prod Res ; 11(10): 867-75, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20183248

RESUMO

The effects of catalponol (1) on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells were investigated. Catalponol at concentration ranges of 1-5 microM increased the intracellular levels of dopamine at 12-48 h. Catalponol at concentrations of up to 10 microM did not alter cell viability. Tyrosine hydroxylase (TH) activity was enhanced by 1 at 3 microM in a time-dependent manner, but aromatic L-amino acid decarboxylase activity was not. Catalponol also increased the intracellular levels of cyclic AMP and TH phosphorylation. In addition, catalponol at 3 microM associated with L-DOPA (20-50 microM) further enhanced the increases in dopamine levels induced by L-DOPA (50-100 microM) at 24 h. Catalponol at 2-5 microM inhibited L-DOPA (100-200 microM)-induced cytotoxicity at 48 h. These results suggest that 1 enhanced dopamine biosynthesis by inducing TH activity and protected against L-DOPA-induced cytotoxicity in PC12 cells, which was mediated by the increased levels of cyclic AMP.


Assuntos
Dopamina/biossíntese , Levodopa/farmacologia , Naftóis/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Naftóis/administração & dosagem , Células PC12 , Ratos
9.
J Cardiovasc Pharmacol ; 51(1): 45-54, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18209568

RESUMO

We have previously reported that green tea catechins displayed a potent antithrombotic effect by inhibition of platelet aggregation. In the present study, the antiplatelet and antithrombotic activities of epigallocatechin gallate (EGCG), the major catechin derived from green tea, were extensively investigated. EGCG inhibited arterial thrombus formation and U46619-, collagen-, and arachidonic acid (AA)-induced washed rabbit platelet aggregation in a concentration-dependent manner, with IC50 values of 61 +/- 3, 85 +/- 4, and 99 +/- 4 microM, respectively. In line with the inhibition of collagen-induced platelet aggregation, EGCG revealed blocking of the collagen-mediated phospholipase (PL) Cgamma2 and protein tyrosine phosphorylation, and it caused concentration-dependent decreases of cytosolic calcium mobilization, AA liberation, and serotonin secretion. In addition, the platelet aggregation, intracellular Ca2+ mobilization, and protein tyrosine phosphorylation induced by thapsigargin, a Ca2(+)-ATPase pump inhibitor, were completely blocked by EGCG. Contrary to the inhibition of AA-induced platelet aggregation, EGCG failed to inhibit cyclooxygenase and thromboxane (TX) A2 synthase activities, but it concentration-dependently elevated AA-mediated PGD2 formation. In contrast, epigallocatechin (EGC), a structural analogue of EGCG lacking a galloyl group in the 3' position, slightly inhibited collagen-stimulated cytosolic calcium mobilization, but failed to affect other signal transductions as did EGCG in activated platelets and arterial thrombus formation. These results suggest that antiplatelet activity of EGCG may be attributable to its modulation of multiple cellular targets, such as inhibitions of PLCgamma2, protein tyrosine phosphorylation and AA liberation, and elevation of cellular PGD2 levels, as well as maintaining Ca2(+)-ATPase activity, which may underlie its beneficial effect on the atherothrombotic diseases.


Assuntos
Catequina/análogos & derivados , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Chá/química , Animais , Ácido Araquidônico/metabolismo , ATPases Transportadoras de Cálcio/efeitos dos fármacos , ATPases Transportadoras de Cálcio/metabolismo , Catequina/administração & dosagem , Catequina/farmacologia , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Masculino , Fosfolipase C gama/efeitos dos fármacos , Fosfolipase C gama/metabolismo , Fosforilação , Inibidores da Agregação Plaquetária/administração & dosagem , Prostaglandina D2/metabolismo , Coelhos , Ratos , Ratos Sprague-Dawley
10.
Biochem Pharmacol ; 75(6): 1331-40, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18191105

RESUMO

The increased potential for growth of vascular smooth muscle cells (VSMCs) is a key abnormality in the development of atherosclerosis and postangioplasty restenosis. Platelet-derived growth factor (PDGF)-BB is a potent mitogen for VSMCs that plays an important role in the intimal accumulation of VSMCs. This study examined the effect of JM91, a newly synthesized indoledione derivative, on the proliferation of PDGF-BB-stimulated rat aortic VSMCs. The antiproliferative effect of JM91 on rat aortic VSMCs was examined by cell counting and [(3)H]thymidine incorporation assay. The pre-incubation of JM91 (0.5-3.0 microM) significantly inhibited the proliferation and DNA synthesis of 25 ng/mL PDGF-BB-stimulated rat aortic VSMCs in a concentration-dependent manner. JM91 inhibited the PDGF-BB-stimulated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt kinase, while had no effect on PLCgamma1 and PDGF-Rbeta activation. In addition, treatment with JM91 (0.5-3.0 microM) induced cell-cycle arrest in the G(1) phase, which was associated with the down-regulation of cyclins and CDKs. These findings suggest that the inhibitory effects of JM91 against proliferation, DNA synthesis and cell cycle progression of PDGF-BB-stimulated rat aortic VSMCs are mediated by the suppression of the ERK1/2 and PI3K/Akt signaling pathways. Furthermore, JM91 may be a potential antiproliferative agent for the treatment of atherosclerosis and angioplasty restenosis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Quinonas/farmacologia , Animais , Aorta/citologia , Becaplermina , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , DNA/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-sis , Ratos , Proteína do Retinoblastoma/metabolismo
11.
J Cell Biochem ; 104(1): 1-14, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17979132

RESUMO

Diet can be one of the most important factors that influence risks for cardiovascular diseases. Hesperetin, a flavonoid present in grapefruits and oranges, is one candidate that may benefit the cardiovascular system. In this study, we have investigated the effect of hesperetin on the platelet-derived growth factor (PDGF)-BB-induced proliferation of primary cultured rat aortic vascular smooth muscle cells (VSMCs). Hesperetin significantly inhibited 50 ng/ml PDGF-BB-induced rat aortic VSMCs proliferation and [(3)H]-thymidine incorporation into DNA at concentrations of 5, 25, 50, and 100 microM. In accordance with these findings, hesperetin revealed blocking of the PDGF-BB-inducible progression through G(0)/G(1) to S phase of the cell cycle in synchronized cells. Western blot showed that hesperetin inhibited not only phosphorylation of retinoblastoma protein (pRb) and expressions of cyclin A, cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2) as well as proliferating cell nuclear antigen (PCNA) protein, but also downregulation of cyclin-dependent kinase inhibitor (CKI) p27(kip1), while did not affect CKI p21(cip1), p16(INK4), p53, and CDK4 expressions as well as early signaling transductions such as PDGF beta-receptor, extracellular signal-regulated kinase (ERK) 1/2, Akt, p38, and JNK phosphorylation. These results suggest that hesperetin inhibits PDGF-BB-induced rat aortic VSMCs proliferation via G(0)/G(1) arrest in association with modulation of the expression or activation of cell-cycle regulatory proteins, which may contribute to the beneficial effect of grapefruits and oranges on cardiovascular system.


Assuntos
Aorta/citologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hesperidina/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Animais , Becaplermina , Proteínas de Ciclo Celular/efeitos dos fármacos , Citrus/química , Flavanonas/farmacologia , Músculo Liso Vascular/citologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-sis , Ratos
12.
Planta Med ; 73(2): 121-7, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17410649

RESUMO

Carnosic acid is a major phenolic diterpene derived from Rosmarinus officinalis and has been reported to have antioxidant, antibacterial, anticancer, antiobese and photoprotective activities. This study investigated the antiplatelet activity of carnosic acid. carnosic acid significantly inhibited collagen-, arachidonic acid-, U46619- and thrombin-induced washed rabbit platelet aggregation in a concentration-dependent manner, with IC50 values of 39+/-0.3, 34+/-1.8, 29+/-0.8 and 48+/-2.9 microM, respectively, while it failed to inhibit PMA-(a direct PKC activator) and ADP-induced platelet aggregation. In agreement with its antiplatelet activity, carnosic acid blocked collagen-, arachidonic acid-, U46619- and thrombin-mediated cytosolic calcium mobilization. accordingly, serotonin secretion and arachidonic acid liberation were also inhibited in a similar concentration-dependent manner. However, in contrast to the inhibition of arachidonic acid-induced platelet aggregation, carnosic acid had no effect on the formation of arachidonic acid-mediated thromboxane A2 and prostaglandin D2, thus indicating that carnosic acid has no effect on the cyclooxygenase and thromboxane A2 synthase activity. Overall, these results suggest that the antiplatelet activity of carnosic acid is mediated by the inhibition of cytosolic calcium mobilization and that carnosic acid has the potential of being developed as a novel antiplatelet agent.


Assuntos
Abietanos/farmacologia , Extratos Vegetais/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Rosmarinus/química , Abietanos/química , Abietanos/isolamento & purificação , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cálcio/metabolismo , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/isolamento & purificação , Coelhos , Ratos
13.
Basic Clin Pharmacol Toxicol ; 100(3): 170-5, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17309520

RESUMO

The antithrombotic and antiplatelet activities of Korean red ginseng extract (KRGE) were examined on rat carotid artery thrombosis in vivo and platelet aggregation in vitro and ex vivo. The KRGE significantly prevented rat carotid arterial thrombosis in vivo in a dose-dependent manner. Administration of the KRGE to rats significantly inhibited adenosine diphosphate (ADP)- and collagen-induced platelet aggregation ex vivo, although it failed to prolong coagulation times such as activated partial thromboplastin and prothrombin time indicating that the antithrombotic effect of the red ginseng may be due to its antiplatelet aggregation rather than anticoagulation effect. In line with the above observations, the red ginseng inhibited the U46619-, arachidonic acid-, collagen- and thrombin-induced rabbit platelet aggregations in vitro in a concentration-dependent manner, with IC(50) values of 390 +/- 15, 485 +/- 19, 387 +/- 11 and 335 +/- 15 microg/ml, respectively. Consistently, serotonin secretion was also inhibited by ginseng in the same pattern. These results suggest that the red ginseng has a potent antithrombotic effect in vivo, which may be due to the antiplatelet rather than the anticoagulation activity, and the red ginseng intake may be beneficial for individuals with high risks of thrombotic and cardiovascular diseases.


Assuntos
Trombose das Artérias Carótidas/prevenção & controle , Fibrinolíticos/farmacologia , Panax , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Animais , Testes de Coagulação Sanguínea , Relação Dose-Resposta a Droga , Fibrinolíticos/administração & dosagem , Fibrinolíticos/química , Técnicas In Vitro , Coreia (Geográfico) , Masculino , Tempo de Tromboplastina Parcial , Extratos Vegetais , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/química , Tempo de Protrombina , Coelhos , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Trombose/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA