Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Adv Mater ; : e2403641, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861754

RESUMO

The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. Three-dimensional (3D) printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field. This article is protected by copyright. All rights reserved.

2.
Adv Sci (Weinh) ; 10(26): e2301763, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395388

RESUMO

Osteoarthritis is a degenerative disease characterized by abnormal neurovascularization at the osteochondral junctions, the regulatory mechanisms of which remain poorly understood. In the present study, a murine osteoarthritic model with augmented neurovascularization at the osteochondral junction is used to examine this under-evaluated facet of degenerative joint dysfunction. Increased extracellular RNA (exRNA) content is identified in neurovascularized osteoarthritic joints. It is found that the amount of exRNA is positively correlated with the extent of neurovascularization and the expression of vascular endothelial growth factor (VEGF). In vitro binding assay and molecular docking demonstrate that synthetic RNAs bind to VEGF via electrostatic interactions. The RNA-VEGF complex promotes the migration and function of endothelial progenitor cells and trigeminal ganglion cells. The use of VEGF and VEGFR2 inhibitors significantly inhibits the amplification of the RNA-VEGF complex. Disruption of the RNA-VEGF complex by RNase and polyethyleneimine reduces its in vitro activities, as well as prevents excessive neurovascularization and osteochondral deterioration in vivo. The results of the present study suggest that exRNAs may be potential targets for regulating nerve and blood vessel ingrowth under physiological and pathological joint conditions.


Assuntos
Osteoartrite , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Osteoartrite/metabolismo , RNA/genética
3.
Inflammation ; 46(6): 2225-2240, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37458919

RESUMO

Heterotopic ossification (HO) severely affects people's lives; however, its pathological mechanism remains poorly understood. Although extracellular DNA (ecDNA) has been shown to play important roles in pathological calcification, its effects in HO development and progression remain unknown. The in vivo rat Achilles tendon injury model and in vitro collagen I calcification model were used to evaluate the effects of ecDNA in the ectopic calcifications and the main cell types involved in those pathological process. Histology, immunofluorescent staining, reverse transcriptase-polymerase chain reaction analysis and micro-computed tomography were used to identify the distribution of macrophage-derived ecDNA and elucidate their roles in HO. The results showed that the amount of ecDNA and ectopic calcification increased significantly and exhibited a strong correlation in the injured tendons of HO model compared with those of the controls, which was accompanied by a significantly increased number of M2 macrophages in the injured tendon. During in vitro co-culture experiments, M2 macrophages calcified the reconstituted type I collagen and ectopic bone collected from the injured tendons of HO rats, while those effects were inhibited by deoxyribonuclease. More importantly, deoxyribonuclease reversed the pathological calcification in the injured rat tendon HO model. The present study showed that ecDNA from M2 macrophages initiates pathological calcification in HO, and the elimination of ecDNA might be developed into a clinical strategy to prevent ectopic mineralization diseases. The use of deoxyribonuclease for the targeted degradation of ecDNA at affected tissue sites provides a potential solution to treat diseases associated with ectopic mineralization.


Assuntos
Ossificação Heterotópica , Humanos , Ratos , Animais , Microtomografia por Raio-X , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Tendões , Macrófagos/metabolismo , Desoxirribonucleases/farmacologia , Osteogênese
4.
Am J Pathol ; 193(9): 1208-1222, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37328100

RESUMO

Oral submucous fibrosis (OSF) is a potentially malignant disorder of the oral mucosa; however, whether and how the fibrotic matrix of OSF is involved in the malignant transformation of epithelial cells remains unknown. Herein, oral mucosa tissue from patients with OSF, OSF rat models, and their controls were used to observe the extracellular matrix changes and epithelial-mesenchymal transformation (EMT) in fibrotic lesions. Compared with controls, oral mucous tissues from patients with OSF showed an increased number of myofibroblasts, a decreased number of blood vessels, and increased type I and type III collagen levels. In addition, the oral mucous tissues from humans and OSF rats showed increased stiffness, accompanied by increased EMT activities of epithelial cells. The EMT activities of stiff construct-cultured epithelial cells were increased significantly by exogenous piezo-type mechanosensitive ion channel component 1 (Piezo1) activation, and decreased by yes-associated protein (YAP) inhibition. During ex vivo implantation, oral mucosal epithelial cells of the stiff group showed increased EMT activities and increased levels of Piezo1 and YAP compared with those in the sham and soft groups. These results indicate that increased stiffness of the fibrotic matrix in OSF led to increased proliferation and EMT of mucosal epithelial cells, in which the Piezo1-YAP signal transduction is important.


Assuntos
Fibrose Oral Submucosa , Humanos , Ratos , Animais , Fibrose Oral Submucosa/metabolismo , Fibrose Oral Submucosa/patologia , Mucosa Bucal/metabolismo , Mucosa Bucal/patologia , Transição Epitelial-Mesenquimal , Miofibroblastos/metabolismo , Células Epiteliais/metabolismo
5.
Biomark Res ; 11(1): 47, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138354

RESUMO

BACKGROUND: Urinary bladder cancer (UBC) is a common malignancy of the urinary tract; however, the mechanism underlying its high recurrence and responses to immunotherapy remains unclear, making clinical outcome predictions difficult. Epigenetic alterations, especially DNA methylation, play important roles in bladder cancer development and are increasingly being investigated as biomarkers for diagnostic or prognostic predictions. However, little is known about hydroxymethylation since previous studies based on bisulfite-sequencing approaches could not differentiate between 5mC and 5hmC signals, resulting in entangled methylation results. METHODS: Tissue samples of bladder cancer patients who underwent laparoscopic radical cystectomy (LRC), partial cystectomy (PC), or transurethral resection of bladder tumor (TURBT) were collected. We utilized a multi-omics approach to analyze both primary and recurrent bladder cancer samples. By integrating various techniques including RNA sequencing, oxidative reduced-representation bisulfite sequencing (oxRRBS), reduced-representation bisulfite sequencing (RRBS), and whole exome sequencing, a comprehensive analysis of the genome, transcriptome, methylome, and hydroxymethylome landscape of these cancers was possible. RESULTS: By whole exome sequencing, we identified driver mutations involved in the development of UBC, including those in FGFR3, KDMTA, and KDMT2C. However, few of these driver mutations were associated with the down-regulation of programmed death-ligand 1 (PD-L1) or recurrence in UBC. By integrating RRBS and oxRRBS data, we identified fatty acid oxidation-related genes significantly enriched in 5hmC-associated transcription alterations in recurrent bladder cancers. We also observed a series of 5mC hypo differentially methylated regions (DMRs) in the gene body of NFATC1, which is highly involved in T-cell immune responses in bladder cancer samples with high expression of PD-L1. Since 5mC and 5hmC alternations are globally anti-correlated, RRBS-seq-based markers that combine the 5mC and 5hmC signals, attenuate cancer-related signals, and therefore, are not optimal as clinical biomarkers. CONCLUSIONS: By multi-omics profiling of UBC samples, we showed that epigenetic alternations are more involved compared to genetic mutations in the PD-L1 regulation and recurrence of UBC. As proof of principle, we demonstrated that the combined measurement of 5mC and 5hmC levels by the bisulfite-based method compromises the prediction accuracy of epigenetic biomarkers.

6.
Bioengineering (Basel) ; 10(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37106589

RESUMO

The low bioavailability of orally administered drugs as a result of the instability in the gastrointestinal tract environment creates significant challenges to developing site-targeted drug delivery systems. This study proposes a novel hydrogel drug carrier using pH-responsive materials assisted with semi-solid extrusion 3D printing technology, enabling site-targeted drug release and customisation of temporal release profiles. The effects of material parameters on the pH-responsive behaviours of printed tablets were analysed thoroughly by investigating the swelling properties under both artificial gastric and intestinal fluids. It has been shown that high swelling rates at either acidic or alkaline conditions can be achieved by adjusting the mass ratio between sodium alginate and carboxymethyl chitosan, enabling site-targeted release. The drug release experiments reveal that gastric drug release can be achieved with a mass ratio of 1:3, whilst a ratio of 3:1 allows for intestinal release. Furthermore, controlled release is realised by tuning the infill density of the printing process. The method proposed in this study can not only significantly improve the bioavailability of oral drugs, but also offer the potential that each component of a compound drug tablet can be released in a controlled manner at a target location.

7.
Front Bioeng Biotechnol ; 11: 1138601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949886

RESUMO

Introduction: Sensory nerves and vessels are critical for skeletal development and regeneration, but crosstalk between neurovascular network and mineralization are not clear. The aim of this study was to explore neurovascular changes and identify bioactive regulators during in situ osteogenesis. Method: In situ osteogenesis model was performed in male rats following Achilles tenotomy. At 3, 6 and 9 weeks after surgery, mineralization, blood vessels, sensory innervation, and bioactive regulators expression were evaluated via micro-computed tomography, immunofluorescent staining, histology and reverse transcriptase-polymerase chain reaction analyses. Result: In the process of in situ osteogenesis, the mineral density increased with time, and the locations of minerals, nerves and blood vessels were highly correlated at each time point. The highest density of sensory nerve was observed in the experimental group at the 3rd week, and then gradually decreased with time, but still higher than that in the sham control group. Among many regulatory factors, semaphorin 3A (Sema3A) was highly expressed in experimental model and its expression was temporally sequential and spatially correlated sensory nerve. Conclusion: The present study showes that during in situ osteogenesis, innervation and angiogenesis are highly correlated, and Sema3A is associated with the position and expression of the sensory nerve.

8.
Neurosci Bull ; 39(2): 213-244, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35788904

RESUMO

Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors - the glial scar is triggered by injury and inhibits or promotes regeneration. Recent technological advances in spatial transcriptomics (ST) provide a unique opportunity to decipher most genes systematically throughout scar formation, which remains poorly understood. Here, we first constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples. Locally, we profiled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment, such as neurotransmitter disorders, activation of the pro-inflammatory response, neurotoxic saturated lipids, angiogenesis, obstructed axon extension, and extracellular structure re-organization. In addition, we described 21 cell transcriptional states during scar formation and delineated the origins, functional diversity, and possible trajectories of subpopulations of fibroblasts, glia, and immune cells. Specifically, we found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophages, CD36 and Postn in fibroblasts, Plxnb2 and Nxpe3 in microglia, Clu in astrocytes, and CD74 in oligodendrocytes. Furthermore, salvianolic acid B, a blood-brain barrier permeation and CD36 inhibitor, was administered after surgery and found to remedy fibrosis. Subsequently, we described the extent of the scar boundary and profiled the bidirectional ligand-receptor interactions at the neighboring cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found that GPR37L1_PSAP, and GPR37_PSAP were the most significant gene-pairs among microglia, fibroblasts, and astrocytes. Last, we quantified the fraction of scar-resident cells and proposed four possible phases of scar formation: macrophage infiltration, proliferation and differentiation of scar-resident cells, scar emergence, and scar stationary. Together, these profiles delineated the spatial heterogeneity of the scar, confirmed the previous concepts about scar architecture, provided some new clues for scar formation, and served as a valuable resource for the treatment of central nervous system injury.


Assuntos
Gliose , Traumatismos da Medula Espinal , Camundongos , Animais , Gliose/metabolismo , Gliose/patologia , Cicatriz/etiologia , Cicatriz/metabolismo , Cicatriz/patologia , Astrócitos/metabolismo , Medula Espinal/patologia , Fibrose , Mamíferos , Receptores Acoplados a Proteínas G
9.
Acta Biomater ; 157: 639-654, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509401

RESUMO

Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant oral disorder. Its pathophysiology is extremely complex, including excessive collagen deposition, massive inflammatory infiltration, and capillary atrophy. However, the existing clinical treatment methods do not fully take into account all the pathophysiological processes of OSF, so they are generally low effective and have many side effects. In the present study, we developed an injectable sodium hyaluronate/45S5 bioglass composite hydrogel (BG/HA), which significantly relieved mucosal pallor and restricted mouth opening in OSF rats without any obvious side effects. The core mechanism of BG/HA in the treatment of OSF is the release of biologically active silicate ions, which inhibit collagen deposition and inflammation, and promote angiogenesis and epithelial regeneration. Most interestingly, silicate ions can overall regulate the physiological environment of OSF by down-regulating α-smooth muscle actin (α-SMA) and CD68 and up-regulating CD31 expression, as well as regulating the expression of pro-fibrotic factors [transforming growth factor-ß1 (TGF-ß1), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α) and tissue inhibitors of metalloproteinase-1 (TIMP-1)] and anti-fibrotic factors [interleukin-1ß (IL-1ß)] in macrophage. In conclusion, our study shows that BG/HA has great potential in the clinical treatment of OSF, which provides an important theoretical basis for the subsequent development of new anti-fibrotic clinical preparations. STATEMENT OF SIGNIFICANCE: : Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant mucosal disease with significant impact on the quality of patients' life. However, the existing clinical treatments have limited efficacy and many side effects. There is an urgent need for development of specific drugs for OSF treatment. In the present study, bioglass (BG) composited with sodium hyaluronate solution (HA) was used to treat OSF in an arecoline-induced rat model. BG/HA can significantly inhibit collagen deposition, regulate inflammatory response, promote angiogenesis and repair damaged mucosal epithelial cells, and thereby mitigate the development of fibrosis in vivo.


Assuntos
Fibrose Oral Submucosa , Ratos , Animais , Fibrose Oral Submucosa/tratamento farmacológico , Fibrose Oral Submucosa/induzido quimicamente , Fibrose Oral Submucosa/metabolismo , Mucosa Bucal , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Hidrogéis/metabolismo , Colágeno/farmacologia , Colágeno/metabolismo
10.
Sci Rep ; 12(1): 13967, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978041

RESUMO

Acute-exacerbation chronic obstructive pulmonary disease (AECOPD) is mainly associated with acute respiratory tract infection. In recent years, a growing number of studies have found that Tanreqing capsule (TRQ) has a favorable anti-inflammatory effect. In this study, we used network pharmacology and pharmacodynamics to explore the molecular mechanism and effects of TRQ in AECOPD treatment. To further understand the molecular mechanism of TRQ in AECOPD treatment, we used the network pharmacology to predict components of TRQ, TRQ-related targets, AECOPD-related targets, and pathways. In addition, we used the cigarette-smoke/lipopolysaccharide -induced AECOPD experimental model in Sprague-Dawley rats (72 rats randomly divided into six groups [n = 12 each]: control, model, high-TRQ [TRQ-H], medium-TRQ [TRQ-M], low-TRQ, and dexamethasone [Dex]) to evaluate the therapeutic effects of TRQ and to verify the network pharmacology. We found that 59 overlapping targets based on component-and AECOPD-related targets were frequently involved in the advanced glycation end product-receptor for advanced glycation end product signaling pathway in diabetic complications, the phosphatidylinositol-3-kinase-protein kinase B signaling pathway, and the hypoxia-inducible factor 1 signaling pathway, which might play important roles in the anti-inflammatory mechanism of TRQ in AECOPD treatment. Moreover, TRQ groups exerted protective effects against AECOPD by reducing the infiltration of inflammatory cells. Meanwhile, TRQ-M and TRQ-H groups significantly downregulated or upregulated the expression of tumor necrosis factor, interleukin (IL) 6, C-reactive protein, IL10, and serum amyloid A, as key targets in network pharmacology, in the serum and bronchoalveolar lavage fluid to achieve anti-inflammatory efficacy. Our study showed that TRQ had better anti-inflammatory efficacy against AECOPD, and initially elucidated its molecular mechanism. Moreover, our study also provides a new strategy to explore effective mechanism of TRQ against AECOPD; and further studies are needed to validate the biological processes and pathways of TRQ against AECOPD.


Assuntos
Farmacologia em Rede , Doença Pulmonar Obstrutiva Crônica , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Medicamentos de Ervas Chinesas , Interleucina-6 , Doença Pulmonar Obstrutiva Crônica/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(7): 598-604, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35786453

RESUMO

Objective To investigate the effect of rat serum containing oxymatrine (OM) on the activation of LX2 human hepatic stellate cells induced by sodium arsenite and its mechanism. Methods SD rats were gavaged with 100 mg/kg OM or equal volume of normal saline to prepare OM-containing serum and blank serum. LO2 human embryonic liver cell line was treated with 100 µmol/L sodium arsenite for 24 hours, and then the supernatant was collected. LX2 cells were incubated with the mixture of the supernatant and normal medium at the ratio of 1:4 for 24 hours to establish the cell model of indirect arsenic exposure. Blank serum group (160 mL/L blank serum), indirect arsenic exposure group (160 mL/L blank serum with arsenic exposure), low-dose OM-containing serum group (80 mL/L blank serum and 80 mL/L OM-containing serum with arsenic exposure), high-dose OM-containing serum group (160 mL/L medicated serum with arsenic exposure) were set up. MTT assay and flow cytometry were used to detect cell proliferation and cell cycle, respectively. Western blot analysis was performed to detect the protein expressions of α-SMA, Bcl2, BAX, cyclin D1, PI3K, and phospho-AKT (p-AKT) in LX2 cells. Results After indirect arsenic treatment, the proliferation rate of LX2 cells increased, the proportion of G1 phase decreased, the proportion of apoptosis decreased, the expression of α-SMA, PI3K, p-AKT, cyclin D1, Bcl2 were significantly up-regulated, and the expression of BAX decreased. After OM-containing serum treatment, the proportion of cells in G1 phase increased, the proportion of apoptosis increased, the expression of BAX protein increased significantly, and the expression of other proteins were significantly down-regulated, especially in the high-dose group. Conclusion OM-containing serum can effectively inhibit the proliferation of LX2 hepatic stellate cells induced by arsenite and promote their apoptosis, which may be related to the blocking of PI3K/AKT signaling pathway.


Assuntos
Arsênio , Arsenitos , Alcaloides , Animais , Arsenitos/metabolismo , Arsenitos/toxicidade , Proliferação de Células , Ciclina D1/metabolismo , Células Estreladas do Fígado , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinolizinas , Ratos , Ratos Sprague-Dawley , Compostos de Sódio , Proteína X Associada a bcl-2/metabolismo
12.
Exp Neurol ; 356: 114157, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35779613

RESUMO

Neurons in the peripheral nervous system (PNS) have robust regenerative capacity after axon injury, but the regenerative capacity is generally absent in the neurons of the central nervous system (CNS) in mammals. Increasing evidence highlighted the pivotal roles of long-noncoding RNAs (lncRNAs) in development and disease, but the role of LncRNA in triggering the regenerative capacity in CNS and PNS is not well studied. Here, we reported that lncRNA Gas5 is a suppressor for axon regeneration. Bioinformatics analysis shows that Gas5 is age-dependent up-regulated during DRG neurons development and down-regulated after sciatic nerve injury. In vitro, inhibiting the expression of Gas5 promotes the neurite growth of DRG neurons both in mice and rats. Consistently, Gas5 overexpression inhibits axon growth of mice DRG neurons. In vivo, Gas5 knockout(Gas5-/-) mice display enhanced nerve regeneration ability after sciatic nerve injury. RNA pull-down analysis indicates that Gas5 can interacts with soluble Vimentin, which is essential for peripheral nerve development and regeneration. Vimentin knockdown reverses the Gas5 silence-regulated axon pro-regeneration demonstrating that the function of Gas5 depending on Vimentin. Besides, inhibition of Gas5 expression can also enhance optic nerve regeneration indicating a potential pro-regenerative ability of Gas5 silence in CNS. Our study for the first time provides direct evidence in vivo that lncRNA plays a role in regulating central axon regrowth and Gas5 might be a novel therapeutic target for axon regeneration in both PNS and CNS.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Traumatismos dos Nervos Periféricos , RNA Longo não Codificante , Neuropatia Ciática , Animais , Axônios/fisiologia , Gânglios Espinais/metabolismo , Mamíferos/genética , Camundongos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ratos , Vimentina/metabolismo
13.
Front Bioeng Biotechnol ; 10: 901749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573252

RESUMO

Introduction: Degradation of the condylar cartilage during temporomandibular joint osteoarthritis (TMJ-OA) results in the infiltration of nerves, blood vessels and inflammatory cells from the subchondral bone into the cartilage. The interaction among innervation, angiogenesis and inflammation in the condylar cartilage of TMJ-OA remains largely unknown. Method: In the present study, microarray-based transcriptome analysis was used to detect, and quantitative real-time polymerase chain reaction was used to validate transcriptome changes in the condylar cartilage from a well-established rat TMJ-OA model. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway and protein-protein interaction (PPI) analyses were conducted. Result: There were 1817 differentially expressed genes (DEGs, fold change ≥2, p < 0.05) between TMJ-OA and control cartilages, with 553 up-regulated and 1,264 down-regulated genes. Among those genes, representative DEGs with known/suspected roles in innervation, angiogenesis and inflammation were further validated by enriched GO terms and KEGG pathways. The DEGs related to innervation were predominately enriched in the GO terms of neurogenesis, generation of neurons, and KEGG pathways of cholinergic synapse and neurotrophin signaling. Genes related to angiogenesis were enriched in GO terms of vasculature and blood vessel development, and KEGG pathways of hypoxia-inducible factor 1 (HIF-1) pathway and calcium signaling pathway. For inflammation, the DEGs were enriched in the GO terms of immune system process and immune response, and KEGG pathways of Toll-like receptor and transforming growth factor ß (TGFß) signaling. Analysis with PPI indicated that the aforementioned DEGs were highly-interacted. Several hub genes such as v-akt murine thymoma viral oncogene homolog 1 (Akt1), glycogen synthase kinase 3ß (Gsk3b), fibroblast growth factor 2 (Fgf2) and nerve growth factor receptor (Ngfr) were validated. Conclusion: The present study demonstrated, for the first time, that intimate interactions exist among innervation, angiogenesis and inflammation in the condylar cartilage of TMJ-OA.

14.
Mol Cancer ; 21(1): 37, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130920

RESUMO

PURPOSE: The overall response of cisplatin-based chemotherapy in bladder urothelial carcinoma (BUC) remains unsatisfactory due to the complex pathological subtypes, genomic difference, and drug resistance. The genes that associated with cisplatin resistance remain unclear. Herein, we aimed to identify the cisplatin resistance associated genes in BUC. EXPERIMENTAL DESIGN: The cytotoxicity of cisplatin was evaluated in six bladder cancer cell lines to compare their responses to cisplatin. The T24 cancer cells exhibited the lowest sensitivity to cisplatin and was therefore selected to explore the mechanisms of drug resistance. We performed genome-wide CRISPR screening in T24 cancer cells in vitro, and identified that the gene heterogeneous nuclear ribonucleoprotein U (HNRNPU) was the top candidate gene related to cisplatin resistance. Epigenetic and transcriptional profiles of HNRNPU-depleted cells after cisplatin treatment were analyzed to investigate the relationship between HNRNPU and cisplatin resistance. In vivo experiments were also performed to demonstrate the function of HNRNPU depletion in cisplatin sensitivity. RESULTS: Significant correlation was found between HNRNPU expression level and sensitivity to cisplatin in bladder cancer cell lines. In the high HNRNPU expressing T24 cancer cells, knockout of HNRNPU inhibited cell proliferation, invasion, and migration. In addition, loss of HNRNPU promoted apoptosis and S-phase arrest in the T24 cells treated with cisplatin. Data from The Cancer Genome Atlas (TCGA) demonstrated that HNRNPU expression was significantly higher in tumor tissues than in normal tissues. High HNRNPU level was negatively correlated with patient survival. Transcriptomic profiling analysis showed that knockout of HNRNPU enhanced cisplatin sensitivity by regulating DNA damage repair genes. Furthermore, it was found that HNRNPU regulates chemosensitivity by affecting the expression of neurofibromin 1 (NF1). CONCLUSIONS: Our study demonstrated that HNRNPU expression is associated with cisplatin sensitivity in bladder urothelial carcinoma cells. Inhibition of HNRNPU could be a potential therapy for cisplatin-resistant bladder cancer.


Assuntos
Antineoplásicos , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma de Células de Transição/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
15.
J Ethnopharmacol ; 289: 115022, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35074456

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Bu-Fei formula (BFF) has a positive effect on chronic obstructive pulmonary disease (COPD). However, its therapeutic mechanisms against COPD remain unknown. AIM OF THE STUDY: To explore BFF's therapeutic effect on COPD and pharmacological mechanisms. MATERIALS AND METHODS: First, the effect of BFF on rats with COPD was studied. Rats were randomly assigned to the blank, COPD, BFF treatment, and aminophylline (APL) treatment groups. From weeks 1-8, the COPD model was established by Klebsiella pneumoniae (KP) and cigarette smoke. Then, rats were given corresponding treatment for 8 weeks. The lung function of the rats was analyzed by whole-body plethysmography and pulmonary function testing, lung histopathology by electron microscopy and hematoxylin and eosin staining, and protein levels by immunohistochemistry. Next, the key components and targets of BFF in COPD were screened by network pharmacology analysis. Finally, the possible mechanism was verified through molecular docking and in vivo experiments. RESULTS: BFF significantly improved lung function and lung histopathology in COPD rats and inhibit inflammation and collagen deposition in lung tissues. Also, 46 bioactive compounds and 136 BFF targets related to COPD were identified; among them, 3 compounds (quercetin, luteolin, and nobiletin) and 6 core targets (Akt1, BCL2, NF-κB p65, VEGFA, MMP9, and Caspase 8) were the key molecules associated with the mechanisms of BFF. The target enrichment analysis suggested that BFF's mechanisms might involve the apoptosis-related pathway; this possibility was supported by the molecular docking data. Lastly, BFF was indicated to increase the expression of core target genes and the production of apoptosis-related proteins. CONCLUSIONS: BFF affects COPD by regulating the apoptosis-related pathways and targets.


Assuntos
Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Farmacologia em Rede , Ratos , Ratos Sprague-Dawley , Testes de Função Respiratória
16.
Pestic Biochem Physiol ; 180: 105002, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34955185

RESUMO

TEER-decreasing protein (TDP) from Flammulina velutipes was antiviral resource against tobacco mosaic virus (TMV). However, the resistance mechanisms have not been clarified. In this study, the fTDP (fusion teer-decreasing protein), obtained by prokaryotic fusion expression system, exhibited obvious protective efficacy against TMV and significantly suppressed the reproduction of TMV in tobacco. Transcriptomics and proteomics analysis showed that fTDP may interact with a receptor, activate the mitogen-activated protein kinase (MAPK) pathway and NB-ARC and increase the content of reactive oxygen species (ROS) and salicylic acid (SA), which promoted the hypersensitive response (HR) and system acquired resistance (SAR). SAR caused increased expression of catalase (CAT), pathogenesis-related protein 1 (PR1), phenylalanine ammonia lyase (PAL) and other proteins involved in pathogen defense, such as chalcone-dihydroflavone isomerase (CHI) and cytochrome P450. In conclusion, SAR was induced by fTDP to protect tobacco from TMV infection and alleviate the symptoms caused by the virus. The study provided a theoretical basis for the application of the TDP protein, which may represent a potential biopesticide.


Assuntos
Vírus do Mosaico do Tabaco , Antivirais/farmacologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico , Transdução de Sinais , Nicotiana/metabolismo
17.
Hum Vaccin Immunother ; 17(12): 5439-5446, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34893010

RESUMO

Cervical cancer is the fourth most common cancer among women worldwide in terms of both incidence and mortality. Persistent infection with high-risk human papillomavirus (HPV) has been identified as a cause of cervical intraepithelial neoplasia and invasive cervical cancer. The distribution of human papillomavirus genotypes varies regionally. To acquire baseline data on the population-based prevalence and genotype distribution of HPV infection, we investigated the molecular epidemiology of HPV infection among women in Xi'an, China. The study was conducted from September 2018 to December 2020. A total of 14,655 women aged 30-65 years were screened. The overall prevalence of HPV infection was 13.5% (95% confidence interval [CI]: 13.0-14.1%), with 10.4% of participants being positive for a single HPV type and 3.1% being positive for multiple HPV types. The prevalence of high-risk HPV (HR-HPV), low-risk HPV (LR-HPV) and mixed HPV infection was 10.1% (95% CI: 9.6-10.5%), 2.2% (95% CI: 2.0-2.4%), and 1.3% (95% CI: 1.1-1.5%), respectively. The five most frequently detected HR-HPV types were types 52 (2.6%), 16 (1.9%), 53 (1.8%), 58 (1.4%), and 51 (0.9%). The most frequently detected LR-HPV type was HPV-42 (1.1%). The prevalence and HPV genotype distribution varied by region and age. Age-specific HPV prevalence peaked in the over 60 years age group (18.8%), and Beilin District had the highest HPV prevalence (18.1%). The results of this first population-based study provide a reference for HPV-based cervical cancer screening and HPV vaccination programs in Xi'an.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , China/epidemiologia , Detecção Precoce de Câncer , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Papillomaviridae/genética , Infecções por Papillomavirus/prevenção & controle , Prevalência , Neoplasias do Colo do Útero/prevenção & controle
18.
BMC Complement Med Ther ; 21(1): 45, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33494738

RESUMO

BACKGROUND: Solanum nigrum L. decoction has been used as a folklore medicine in China to prevent the postoperative recurrence of bladder cancer (BC). However, there are no previous pharmacological studies on the protective mechanisms of this activity of the plant. Thus, this study aimed to perform a systematic analysis and to predict the potential action mechanisms underlying S. nigrum activity in BC based on network pharmacology. METHODS: Based on network pharmacology, the active ingredients of S. nigrum and the corresponding targets were identified using the Traditional Chinese Medicines for Systems Pharmacology Database and Analysis Platform database, and BC-related genes were screened using GeneCards and the Online Mendelian Inheritance in Man database. In addition, ingredient-target (I-T) and protein-protein interaction (PPI) networks were constructed using STRING and Cytoscape, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted, and then the pathways directly related to BC were integrated manually to reveal the pharmacological mechanism underlying S. nigrum-medicated therapeutic effects in BC. RESULTS: Seven active herbal ingredients from 39 components of S. nigrum were identified, which shared 77 common target genes related to BC. I-T network analysis revealed that quercetin was associated with all targets and that NCOA2 was targeted by four ingredients. Besides, interleukin 6 had the highest degree value in the PPI network, indicating a hub role. A subsequent gene enrichment analysis yielded 86 significant GO terms and 89 significant pathways, implying that S. nigrum had therapeutic benefits in BC through multi-pathway effects, including the HIF-1, TNF, P53, MAPK, PI3K/Akt, apoptosis and bladder cancer pathway. CONCLUSIONS: S. nigrum may mediate pharmacological effects in BC through multi-target and various signaling pathways. Further validation is required experimentally. Network pharmacology approach provides a predicative novel strategy to reveal the holistic mechanism of action of herbs.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Solanum nigrum/química , Neoplasias da Bexiga Urinária/tratamento farmacológico , Apoptose/efeitos dos fármacos , Bases de Dados Genéticas/estatística & dados numéricos , Medicamentos de Ervas Chinesas/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Coativador 2 de Receptor Nuclear/genética , Coativador 2 de Receptor Nuclear/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/fisiopatologia
19.
Dysphagia ; 36(3): 339-350, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32458145

RESUMO

OBJECTIVE: To determine the prevalence of dysphagia among an older population and patients with stroke, head and neck cancers (HNCs) or neurodegenerative diseases (NDDs) in China, to identify the factors associated with this condition, and to explore the relationship between dysphagia and nutritional status. METHODS: This study included participants 65 years and older living in the community or in nursing homes and patients who had sustained a stroke, HNC, or NDD also recruited in hospitals from 14 provinces of China. The presence of dysphagia was determined by use of a questionnaire, water swallowing test, and/or a videofluoroscopic swallowing study. Logistic regression analysis was used to assess the possible associated risk factors. Body mass index was assessed as an indicator of malnutrition. RESULTS: A total of 5943 persons met the inclusion criteria and 2341 (39.4%) were identified with dysphagia, including the following: 51.14% of patients with stroke, 34.4% in HNCs, 48.3% in NDDs, and 19.2% of otherwise healthy older adults. The elderly with comorbidity (OR = 2.90, p < 0.01) and stroke patients (OR = 2.27, p < 0.01) were significantly more likely to exhibit signs of dysphagia. Dysphagic participants were at significantly greater risk of malnutrition (OR = 1.91, p < 0.01) compared to those without dysphagia. CONCLUSION: Dysphagia is prevalent in China among older individuals and people who have suffered a stroke, HNCs, or NDDs. The prevalence of dysphagia increases steadily with increasing age and presence of comorbid disease. People with dysphagia are more likely to suffer from malnutrition.


Assuntos
Transtornos de Deglutição , Idoso , China/epidemiologia , Estudos Transversais , Transtornos de Deglutição/epidemiologia , Humanos , Prevalência , Inquéritos e Questionários
20.
Endocrine ; 67(1): 224-232, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31325086

RESUMO

Kallmann syndrome (KS) is a congenital hypogonadotropic hypogonadism that coincides with anosmia or hyposmia. Although this rare genetic disease has a very low incidence, it harbors a complicated genetic heterogeneity, which indicates X-linked, autosomal, and oligogenic inheritance of puberty, sexuality, reproductivity, and olfactory defects. There has been limited elucidation of molecular etiologies completed to date. Here, a chromosome reciprocal translocation (46, XX, t (3; 13) (p13; q22)) was identified in a 27-year-old Chinese female diagnosed with KS. Genome sequencing found an intronic breakpoint of SCEL in chromosome 13 and an intergenic breakpoint between ROBO1 and ROBO2 in chromosome 3. This translocation resulted in the reduced expression levels of these genes. An array-CGH test captured no abnormal genomic copy numbers of clinical significance. The basic features of all known KS-related genes were also reviewed and analyzed for their roles in KS onset with bioinformatic methods. Signal pathway and gene enrichment analysis of KS-related genes suggested that these genes have integrated functions in neuronal migration and differentiation. An interesting chromosome locational pattern of KS-related genes was also discovered. This study provided constructive clues for further investigations into the molecular etiology of KS.


Assuntos
Hipogonadismo , Síndrome de Kallmann , Adulto , Proteínas de Transporte , Biologia Computacional , Feminino , Humanos , Síndrome de Kallmann/genética , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA