Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(39): 45539-45548, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37713436

RESUMO

Fluorescent dyes have garnered significant attention as theranostic platforms owing to their inherent characteristics. In this study, we present the discovery of Medical Fluorophore 33 (MF33), a novel and potent theranostic agent with a phenaleno-isoquinolinium salt structure that can serve as a cancer therapeutic strategy. The synthesis of MF33 is readily achievable through a simple Rh(III)-catalyzed reaction. Moreover, MF33 displayed strong fluorescence signals, excellent microsomal stability, and high biocompatibility in vivo. It induces significant apoptosis in cancer cells via the p53/p21/caspase-3 signaling pathway, leading to selective cytotoxicity in various cancer cells. In vivo fluorescence imaging with MF33 enabled the visualization of sentinel lymph nodes in living mice. Notably, repeated intraperitoneal administration of MF33 resulted in antitumor activity in mice with colorectal cancer. Collectively, our findings suggest that phenaleno-isoquinolinium salt-based MF33 is a viable theranostic agent for biomedical imaging and cancer treatment.


Assuntos
Corantes Fluorescentes , Neoplasias , Animais , Camundongos , Corantes Fluorescentes/química , Medicina de Precisão , Estudos de Viabilidade , Neoplasias/terapia , Nanomedicina Teranóstica/métodos
2.
J Mater Chem B ; 9(48): 9946-9950, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34852032

RESUMO

Fluorescence imaging agents have recently received huge attention due to their important role in disease diagnostics. However, the intrinsic problems of these probes, such as complex synthetic routes and high molecular weight, remain challenging. Here, we developed novel phenaleno isoquinolinium-based fluorescent agents, Medical Fluorophores 37-41 (MF37-41), applicable to the quantitative and sensitive detection of sentinel lymph nodes (SLNs). These imaging agents showed no adverse effects on the proliferation of immune and normal cells and did not induce in vivo toxicity. In vivo fluorescence lifetime imaging demonstrated the accumulation of phenaleno isoquinolinium salts in the SLNs of nude mice within 15 min postinjection, consistent with our biodistribution findings. These results suggest that phenaleno isoquinolinium salts are feasible fluorescence imaging agents that can be used as potential lymphatic tracers.


Assuntos
Materiais Biocompatíveis/química , Descoberta de Drogas , Corantes Fluorescentes/química , Isoquinolinas/química , Imagem Óptica , Fenalenos/química , Linfonodo Sentinela/diagnóstico por imagem , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/síntese química , Linhagem Celular , Cricetulus , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/síntese química , Injeções Intravenosas , Isoquinolinas/administração & dosagem , Teste de Materiais , Camundongos , Estrutura Molecular , Fenalenos/administração & dosagem
3.
J Mater Chem B ; 9(24): 4857-4862, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34076031

RESUMO

Fluorescent imaging agents with biocompatibility and high sensitivity are urgently required for the accurate detection of sentinel lymph nodes (SLNs). Herein, we report the design of a novel quinoline-based fluorescent probe, designated KSNP117, which can be applied as a biomedical imaging agent in the sensitive and quantitative detection of SLNs. KSNP117 exerted no adverse effects on the proliferation of ovary and immune cells and also showed excellent serum stability with photo-brightening effects. In vivo fluorescent imaging revealed the accumulation of KSNP117 in the SLNs of nude mice within 10 min post injection, without in vivo toxicity, which was consistent with the findings of ex vivo imaging. These results support the potential of KSNP117 as a promising lymphatic tracer for biomedical imaging applications.


Assuntos
Corantes Fluorescentes/química , Imagem Óptica/métodos , Quinolinas/química , Linfonodo Sentinela/diagnóstico por imagem , Animais , Feminino , Masculino , Camundongos
4.
J Mater Chem B ; 7(46): 7326-7331, 2019 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-31681930

RESUMO

Structure-based targeting of fluorescent dyes is essential for their use as imaging agents for disease diagnosis. Here, we describe the development of the benzoquinolizinium compound Medical fluorophore 1 (MF1) as a novel biomedical imaging agent that allows the visualization of inflammation by virtue of its unique chemical structure. Lipopolysaccharide treatment stimulated the uptake of MF1 by bone marrow-derived macrophages, with no adverse effects on cell proliferation. In vivo fluorescence lifetime imaging revealed the accumulation of MF1 in carrageenan-induced acute inflammatory lesions in mice, which peaked at 6 h. MF1-based imaging also allowed monitoring of the response to the anti-inflammatory drugs dexamethasone and sulfasalazine. Thus, MF1 can be used to diagnose diseases characterized by inflammation as well as treatment efficacy.


Assuntos
Corantes Fluorescentes/química , Compostos de Amônio Quaternário/química , Animais , Anti-Inflamatórios/farmacologia , Proliferação de Células , Citocinas/metabolismo , Dexametasona/farmacologia , Fibroblastos/efeitos dos fármacos , Humanos , Inflamação , Lipopolissacarídeos/química , Macrófagos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Microscopia Confocal , Sulfassalazina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA