Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 113(12): 4181-4192, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36050601

RESUMO

Malignant melanoma (MM) is a neoplasm that develops from human melanocytes. It was reported that eukaryotic translation initiation factor 3 subunit B (EIF3B) is associated with multiple types of cancers, but its role in MM has not been reported. In the present study, we found that EIF3B was abundantly expressed in MM and was strongly related to lymphatic metastasis and pathological stage of MM patients. In addition, EIF3B depletion could block the progression of MM in vitro and in vivo. In contrast, EIF3B overexpression increased cell proliferation and migration in melanoma cells. More importantly, we identified that EIF3B's driver role in MM was mediated by PTGS2. In detail, we found that EIF3B stabilized PTGS2 expression by inhibiting PTGS2 ubiquitination, which is mediated by the E3 ligase MDM2. Moreover, like EIF3B, silencing PTGS2 could suppress MM development, and more interestingly, it could reverse the situation caused by overexpression of EIF3B in vitro and in vivo. Furthermore, the proliferation and migration inhibited by silencing of EIF3B were also partially recovered by overexpression of PTGS2. Overall, our findings revealed the potential of EIF3B as a therapeutic target for MM. Identification of EIF3B's function in MM may pave the way for future development of more specific and more effective targeted therapy strategies against MM.


Assuntos
Fator de Iniciação 3 em Eucariotos , Melanoma , Humanos , Fator de Iniciação 3 em Eucariotos/genética , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Melanoma/genética , Ubiquitinação , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Melanoma Maligno Cutâneo
2.
J Control Release ; 350: 922-932, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108810

RESUMO

Tumor hypoxia is confirmed to be associated with the formation of tumor immunosuppression, a general feature of solid tumors, and thus attenuates the effectiveness of various cancer therapies in clinic. We herein develop a tumor microenvironment (TME) modulating liposomal nanomedicine by encapsulating metformin with amphiphilic oxaliplatin prodrug constructed liposomes to potentiate cancer immunotherapy. While metformin could regulate metabolisms of tumor cells to reduce their oxygen consumption and relieve tumor hypoxia, oxaliplatin is a chemotherapy drug that induces immunogenic cell death (ICD). The obtained met-oxa(IV)-liposome upon intravenous injection effectively attenuates tumor hypoxia and induce ICD of cancer cells, thereby collectively suppresses the growth of murine colorectal tumors by eliciting potent antitumor immunity and reversing the immunosuppressive TME. As the result, the treatment with met-oxa(IV)-liposome effectively potentiates the immune checkpoint blockade (ICB) therapy against murine colorectal tumors. This liposomal nanomedicine is highlighted to be a TME modulating liposomal nanomedicine with high potency in suppressing tumor growth, particularly promising in synergizing with ICB therapy by boosting antitumor immune responses.


Assuntos
Neoplasias Colorretais , Metformina , Pró-Fármacos , Radiossensibilizantes , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico , Fatores Imunológicos , Imunoterapia , Lipossomos/uso terapêutico , Metformina/uso terapêutico , Camundongos , Oxaliplatina/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Radiossensibilizantes/uso terapêutico , Microambiente Tumoral
3.
Rapid Commun Mass Spectrom ; 36(21): e9372, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35918299

RESUMO

RATIONALE: Anlotinib is a multi-target tyrosine kinase inhibitor, approved in China for treating several cancer types. Dose individualization based on therapeutic drug monitoring (TDM) is a useful tool to reduce toxicity. However, it is not convenient for patients to go to hospital for routine TDM via venous blood sampling at a certain time. METHODS: An ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for determination of anlotinib in human plasma and dried blood spot (DBS), characterized by simple sample preparation, high sensitivity, and short analysis time. The assay was validated in the concentration range of 0.2-200 ng/mL in plasma and 5-1000 ng/mL in DBS. This method was applied to monitor anlotinib exposure levels in patients with advanced biliary tract cancer (BTC) and non-small cell lung cancer (NSCLC). RESULTS: The trough plasma concentration (Ctrough ) of anlotinib was highly variable among BTC patients with coefficients of variation (CV) of 47.5%. DBS and venous blood samples were also collected from NSCLC patients to determine whether DBS sampling is a viable alternative sampling approach. Pearson correlation coefficient (R) between DBS and plasma concentration was 0.985. Bland-Altman plot demonstrated that the difference between estimated and measured plasma concentration was -2.9%. And 87% of sample pairs had a maximal deviation of ±20%. CONCLUSIONS: Anlotinib exhibits a high inter-individual variability in plasma exposure, and DBS sampling could be a promising tool for TDM of anlotinib.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Teste em Amostras de Sangue Seco/métodos , Humanos , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Quinolinas , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
4.
Sci Adv ; 8(31): eabo5285, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35921425

RESUMO

Microwave ablation (MWA) as a local tumor ablation strategy suffers from posttreatment tumor recurrence. Development of adjuvant biomaterials to potentiate MWA is therefore of practical significance. Here, the high concentration of Ca2+ fixed by alginate as Ca2+-surplus alginate hydrogel shows enhanced heating efficiency and restricted heating zone under microwave exposure. The high concentration of extracellular Ca2+ synergizes with mild hyperthermia to induce immunogenic cell death by disrupting intracellular Ca2+ homeostasis. Resultantly, Ca2+-surplus alginate hydrogel plus MWA can ablate different tumors on both mice and rabbits at reduced operation powers. This treatment can also elicit antitumor immunity, especially if synergized with Mn2+, an activator of the stimulation of interferon genes pathway, to suppress the growth of both untreated distant tumors and rechallenged tumors. This work highlights that in situ-formed metallo-alginate hydrogel could act as microwave-susceptible and immunostimulatory biomaterial to reinforce the MWA therapy, promising for clinical translation.


Assuntos
Neoplasias Hepáticas , Micro-Ondas , Alginatos , Animais , Hidrogéis/farmacologia , Neoplasias Hepáticas/patologia , Camundongos , Micro-Ondas/uso terapêutico , Coelhos , Resultado do Tratamento
5.
J Control Release ; 348: 346-356, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35679965

RESUMO

Ferroptosis is a recently identified regulated cell death pathway featured in iron prompted lipid peroxidation inside cells and found to be an effective approach to suppress tumor growth. Motived by the high efficacy of ferrous ions (Fe2+) in initiating intracellular lipid peroxidation via the Fenton reaction, this study herein prepares a pH-responsive Fe2+ delivery nanocarrier by coating calcium carbonate (CaCO3) nanoparticles with a metal-polyphenol coordination polymer composed of gallic acid (GA) and Fe2+. Together with simultaneous encapsulation of succinic acid conjugated cisplatin prodrugs (Pt(IV)-SA) and Fe2+, the yielded nanoparticles, coined as PGFCaCO3, are synthesized and exhibit uniform hollow structure. After PEGylation, the resulted PGFCaCO3-PEG shows increased physiological stability and pH-dependent decomposition, drug release and catalytic capability in initiating lipid peroxidation. After being endocytosed, PGFCaCO3-PEG effectively promoted intracellular generation of cytotoxic reactive oxygen species including lipid peroxide, thereby exhibited superior inhibition effect towards both murine 4T1 and CT26 cancer cells over Pt(IV)-SA and GFCaCO3-PEG. As a result, treatment with systemic administration of PGFCaCO3-PEG effectively suppressed 4T1 tumor growth via combined Fe2+ initiated ferroptosis and Pt(IV)-SA mediated chemotherapy. This work highlights that intracellular delivery of Fe2+ is a robust approach to enhance tumor chemotherapy by inducing ferroptosis.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Animais , Humanos , Camundongos , Carbonato de Cálcio , Linhagem Celular Tumoral , Íons , Ferro , Nanopartículas/química , Neoplasias/tratamento farmacológico
6.
Front Oncol ; 12: 772723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387129

RESUMO

Chemotherapy resistance in breast cancer is an important factor affecting the prognosis of breast cancer patients. We computationally analyzed the differences in gene expression before and after chemotherapy in breast cancer patients, drug-sensitive groups, and drug-resistant groups. Through functional enrichment analysis, immune microenvironment analysis, and other computational analysis methods, we identified PRC1, GGTLC1, and IRS1 as genes that may mediate breast cancer chemoresistance through the immune pathway. After validation of certain other clinical datasets and in vitro cellular assays, we found that the above three genes influenced drug resistance in breast cancer patients and were closely related to the tumor immune microenvironment. Our finding that chemoresistance in breast cancer could be influenced by the mediation of tumor immunity expanded our knowledge of how to address this problem and could guide future research involving chemoresistance.

7.
Dis Markers ; 2022: 1909196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35075375

RESUMO

Prostate cancer is still a significant global health burden in the coming decade. Novel biomarkers for detection and prognosis are needed to improve the survival of distant and advanced stage prostate cancer patients. The tumor microenvironment is an important driving factor for tumor biological functions. To investigate RNA prognostic biomarkers for prostate cancer in the tumor microenvironment, we obtained relevant data from The Cancer Genome Atlas (TCGA) database. We used the bioinformatics tools Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm and weighted coexpression network analysis (WGCNA) to construct tumor microenvironment stromal-immune score-based competitive endogenous RNA (ceRNA) networks. Then, the Cox regression model was performed to screen RNAs associated with prostate cancer survival. The differentially expressed gene profile in tumor stroma was significantly enriched in microenvironment functions, like immune response, cancer-related pathways, and cell adhesion-related pathways. Based on these differentially expressed genes, we constructed three ceRNA networks with 152 RNAs associated with the prostate cancer tumor microenvironment. Cox regression analysis screened 31 RNAs as the potential prognostic biomarkers for prostate cancer. The most interesting 8 prognostic biomarkers for prostate cancer included lncRNA LINC01082, miRNA hsa-miR-133a-3p, and genes TTLL12, PTGDS, GAS6, CYP27A1, PKP3, and ZG16B. In this systematic study for ceRNA networks in the tumor environment, we screened out potential biomarkers to predict prognosis for prostate cancer. Our findings might apply a valuable tool to improve prostate cancer clinical management and the new target for mechanism study and therapy.


Assuntos
Adenocarcinoma/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , RNA Mensageiro/genética , Microambiente Tumoral , Biomarcadores Tumorais , Redes Reguladoras de Genes , Humanos , Masculino , Próstata/metabolismo
8.
Adv Mater ; 34(3): e2106520, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34773309

RESUMO

Radiotherapy is widely exploited for the treatment of a large range of cancers in clinic, but its therapeutic effectiveness is seriously crippled by the tumor immunosuppression, mainly driven by the altered metabolism of cancer cells. Here, a pH-responsive nanomedicine is prepared by coating calcium carbonate (CaCO3 ) nanoparticles with 4-phenylimidazole (4PI), an inhibitor against indoleamine 2,3-dioxygenase 1 (IDO-1), together with zinc ions via the coordination reaction, aiming at reinforcing the treatment outcome of radiotherapy. The obtained pH-responsive nanomedicine, coined as acidity-IDO1-modulation nanoparticles (AIM NPs), is able to instantly neutralize protons, and release 4PI to suppress the IDO1-mediated production of kynurenine (Kyn) upon tumor accumulation. As a result, treatment with AIM NPs can remarkably enhance the therapeutic efficacy of radiotherapy against both murine CT26 and 4T1 tumors by eliciting potent antitumor immunity. Furthermore, it is shown that such combination treatment can effectively suppress the growth of untreated distant tumors via the abscopal effect, and result in immune memory responses to reject rechallenged tumors. This work highlights a novel strategy of simultaneous tumor acidity neutralization and IDO1 inhibition to potentiate radiotherapy, with great promises to suppress tumor metastasis and recurrence by eliciting robust antitumor immunity.


Assuntos
Carbonato de Cálcio , Polímeros , Radioterapia , Microambiente Tumoral , Animais , Carbonato de Cálcio/uso terapêutico , Linhagem Celular Tumoral , Imidazóis/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Camundongos , Polímeros/uso terapêutico , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA