Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062525

RESUMO

Peptide-based drug development is a promising direction due to its excellent biological activity, minimal immunogenicity, high in vivo stability, and efficient tissue penetrability. GV1001, an amphiphilic peptide, has proven effective as an anti-cancer vaccine, but its effect on osteoblast differentiation is unknown. To identify proteins interacting with GV1001, biotin-conjugated GV1001 was constructed and confirmed by mass spectrometry. Proteomic analyses were performed to determine GV1001's interaction with osteogenic proteins. GV1001 was highly associated with peptidyl-prolyl isomerase A and co-immunoprecipitation assays revealed that GV1001 bound to peptidyl-prolyl cis-trans isomerase 1 (Pin1). GV1001 significantly increased alkaline phosphatase (ALP) activity, bone nodule formation, and the expression of osteogenic gene markers. GV1001-induced osteogenic activity was enhanced by Pin1 overexpression and abolished by Pin1 knockdown. GV1001 increased the protein stability and transcriptional activity of Runx2 and Osterix. Importantly, GV1001 administration enhanced bone mass density in the OVX mouse model, as verified by µCT analysis. GV1001 demonstrated protective effects against bone loss in OVX mice by upregulating osteogenic differentiation via the Pin1-mediated protein stabilization of Runx2 and Osterix. GV1001 could be a potential candidate with anabolic effects for the prevention and treatment of osteoporosis.


Assuntos
Peptídeos Penetradores de Células , Subunidade alfa 1 de Fator de Ligação ao Core , Peptidilprolil Isomerase de Interação com NIMA , Osteogênese , Fator de Transcrição Sp7 , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Osteogênese/efeitos dos fármacos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Camundongos , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Fator de Transcrição Sp7/metabolismo , Fator de Transcrição Sp7/genética , Humanos , Feminino , Estabilidade Proteica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia
2.
Biomed Pharmacother ; 167: 115433, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696086

RESUMO

Inflammation and insulin resistance play important roles in the development and progression of type 2 diabetes mellitus. The enhancement of adipocyte differentiation can improve insulin sensitivity by increasing glucose uptake, improving insulin signaling, and reducing inflammation. However, only a few adipogenic agents have shown clinical success in patients with type 2 diabetes mellitus. The therapeutic potential of berberine in type 2 diabetes mellitus was confirmed in terms of the target gene-disease relationship using a network pharmacology database prior to synthesizing the derivatives. Novel berberine derivatives were synthesized, and compound 3b promoted adipocyte differentiation and improvement of insulin resistance in OP9 cells. Compound 3b significantly increased the expression of key adipogenic markers including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein ß (C/EBPß) and promoted lipid accumulation without cytotoxicity. Furthermore, tumor necrosis factor α (TNF-α)-induced inhibition of adipocyte differentiation and the elevation of inflammatory responses were reversed by compound 3b. Subsequently glucose uptake level through insulin sensitivity improvement was enhanced by compound 3b. Mechanistically, TNF-α activated mitogen-activated protein kinases (MAPKs): ERK, JNK, and p38, whereas compound 3b attenuated phosphorylation of three MAPKs. Finally, in silico molecular docking suggested the possible binding sites of compound 3b on PPARγ. Collectively, the adipogenic and glucose uptake effects of compound 3b were associated with its anti-inflammatory effects and reduced phosphorylation of MAPKs. These findings suggest that the berberine derivative compound 3b may be a potent antidiabetic agent.

3.
Curr Protein Pept Sci ; 24(7): 610-619, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37317916

RESUMO

BACKGROUND: Despite the promising clinical potential of bone morphogenetic protein (BMP)-related therapies for bone formation, their side effects warrant the need for alternative therapeutic peptides. BMP family members can aid in bone repair; however, peptides derived from BMP2/ 4 have not yet been investigated. METHODS: In this study, three candidates BMP2/4 consensus peptide (BCP) 1, 2, and 3 were identified and their ability to induce osteogenesis in C2C12 cells was analyzed. First, an alkaline phosphatase (ALP) staining assay was performed to evaluate the osteogenic effects of BCPs. Next, the effects of BCPs on RNA expression levels and protein abundances of osteogenic markers were explored. Furthermore, the transcriptional activity of ALP by BCP1 and in silico molecular docking model on BMP type IA receptor (BRIA) were performed. RESULTS: BCP1-3 induced higher RUNX2 expression than BMP2. Interestingly, among them, BCP1 significantly promoted osteoblast differentiation more than BMP2 in ALP staining with no cytotoxicity. BCP1 significantly induced the osteoblast markers, and the highest RUNX2 expression was observed at 100 ng/mL compared to other concentrations. In transfection experiments, BCP1 stimulated osteoblast differentiation via RUNX2 activation and the Smad signaling pathway. Finally, in silico molecular docking suggested the possible binding sites of BCP1 on BRIA. CONCLUSION: These results show that BCP1 promotes osteogenicity in C2C12 cells. This study suggests that BCP1 is the most promising candidate peptide to replace BMP2 for osteoblast differentiation.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Osteogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Consenso , Simulação de Acoplamento Molecular , Diferenciação Celular/genética , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Osteoblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA