Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854798

RESUMO

Background: To investigate the effects of arsenic trioxide (ATO) on human colorectal cancer cells (HCT116) growth and the role of transient receptor potential melastatin 4 (TRPM4) channel in this process. Methods: The viability of HCT116 cells was assessed using the CCK-8 assay. Western blot analysis was employed to examine the protein expression of TRPM4. The apoptosis of HCT116 cells was determined using TUNEL and Flow cytometry. Cell migration was assessed through the cell scratch recovery assay and Transwell cell migration assay. Additionally, Transwell cell invasion assay was performed to determine the invasion ability of HCT116 cells. Results: ATO suppressed the viability of HCT116 cells in a dose-dependent manner, accompanied by a decline in cell migration and invasion, and an increase in apoptosis. 9-phenanthroline (9-Ph), a specific inhibitor of TRPM4, abrogated the ATO-induced upregulation of TRPM4 expression. Additionally, blocking TRPM4 reversed the effects of ATO on HCT116 cells proliferation, including restoration of cell viability, migration and invasion, as well as the inhibition of apoptosis. Conclusion: ATO inhibits CRC cell growth by inducing TRPM4 expression, our findings indicate that ATO is a promising therapeutic strategy and TRPM4 may be a novel target for the treatment of CRC.


Assuntos
Apoptose , Trióxido de Arsênio , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Neoplasias Colorretais , Canais de Cátion TRPM , Humanos , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética , Trióxido de Arsênio/farmacologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Células HCT116 , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Óxidos/farmacologia , Antineoplásicos/farmacologia , Invasividade Neoplásica , Arsenicais/farmacologia
2.
Acta Pharmacol Sin ; 45(3): 517-530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37880339

RESUMO

Malignant ventricular arrhythmia (VA) after myocardial infarction (MI) is mainly caused by myocardial electrophysiological remodeling. Brahma-related gene 1 (BRG1) is an ATPase catalytic subunit that belongs to a family of chromatin remodeling complexes called Switch/Sucrose Non-Fermentable Chromatin (SWI/SNF). BRG1 has been reported as a molecular chaperone, interacting with various transcription factors or proteins to regulate transcription in cardiac diseases. In this study, we investigated the potential role of BRG1 in ion channel remodeling and VA after ischemic infarction. Myocardial infarction (MI) mice were established by ligating the left anterior descending (LAD) coronary artery, and electrocardiogram (ECG) was monitored. Epicardial conduction of MI mouse heart was characterized in Langendorff-perfused hearts using epicardial optical voltage mapping. Patch-clamping analysis was conducted in single ventricular cardiomyocytes isolated from the mice. We showed that BRG1 expression in the border zone was progressively increased in the first week following MI. Cardiac-specific deletion of BRG1 by tail vein injection of AAV9-BRG1-shRNA significantly ameliorated susceptibility to electrical-induced VA and shortened QTc intervals in MI mice. BRG1 knockdown significantly enhanced conduction velocity (CV) and reversed the prolonged action potential duration in MI mouse heart. Moreover, BRG1 knockdown improved the decreased densities of Na+ current (INa) and transient outward potassium current (Ito), as well as the expression of Nav1.5 and Kv4.3 in the border zone of MI mouse hearts and in hypoxia-treated neonatal mouse ventricular cardiomyocytes. We revealed that MI increased the binding among BRG1, T-cell factor 4 (TCF4) and ß-catenin, forming a transcription complex, which suppressed the transcription activity of SCN5A and KCND3, thereby influencing the incidence of VA post-MI.


Assuntos
Infarto do Miocárdio , Camundongos , Animais , Infarto do Miocárdio/metabolismo , Arritmias Cardíacas/genética , Miocárdio/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Miócitos Cardíacos/metabolismo
3.
Fitoterapia ; 151: 104860, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33582265

RESUMO

Glycyrrhizic acid, the main active ingredient of licorice, has good antibacterial, anti-tumor, anti-viral, anti-inflammatory, and immunostimulatory activities. However, the content of glycyrrhizic acid fluctuates greatly in different licorice cultivars, and production depends on plant sources, which greatly limits its development and applications. Therefore, increasing glycyrrhizic acid content has become a research priority. In recent years, regulation of the glycyrrhizic acid biosynthesis pathway has been analyzed, the downstream synthesis pathway in licorice has been fully investigated, some key genes have been cloned, polymorphisms have been studied, and the content of glycyrrhizic acid was shown to be regulated by environmental stimuli. This work has provided a basis for studying the regulation mechanism of the glycyrrhizic acid synthesis pathway. This review summarizes and discusses relevant research to provide a current understanding of the glycyrrhizic acid synthesis pathway and its regulation in licorice.


Assuntos
Glycyrrhiza/metabolismo , Ácido Glicirrízico/metabolismo , Vias Biossintéticas , Meio Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA