Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 446: 138827, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402772

RESUMO

As the final processing step, drying temperature between 90 and 140 â„ƒ is usually applied to terminate enzymatic activities and improve sensory characteristics of black tea. Liquid chromatography tandem mass spectrometry (LC-MS) based non-targeted and targeted metabolomics analyses combined in vitro biological assays were adopted to investigate the chemical and biological variations after drying. Fifty-nine differentially expressed metabolites including several hydroxycinnamic acid derivatives and pyroglutamic acid-glucose Amadori rearrangement products (ARPs) were identified, the latter of which was correspondingly accumulated with increasing temperature. The levels of theaflavins (TFs), thearubigins (TRs), monosaccharides and free amino acids gradually decreased with increasing temperature. Furthermore, the bioassays of black tea showed that drying under 110 â„ƒ provided the highest antioxidant capacities, but the inhibitory effects on α-glucosidase and α-amylase were decreasing along with increasing drying temperature. These results are valuable for optimizing drying process to obtain superior sensory properties and preserve bioactivities of black tea.


Assuntos
Camellia sinensis , Chá , Chá/química , Polifenóis/análise , Temperatura , Camellia sinensis/química , Cromatografia Líquida , Antioxidantes/análise
2.
Food Chem ; 417: 135895, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36931012

RESUMO

Untargeted Liquid chromatography tandem mass spectrometry (LC-MS) based metabolomics in combination with UV-visible and colorimeter was applied in identifying critical colored enzymatically oxidized products of (-)-epigallocatechin gallate (EGCG). Pearson correlation coefficient analysis between marker compounds and a* value was conducted, and then a series of colored oxidation products were targeted and subsequently identified by diode array detection and mass fragmentation ions. The quinone of oolongtheanin 3-O'-gallate degraded product with quasi-molecular mass ion at m/z 711 was identified as a critical colored oxidation product of single EGCG. To explore the effect of chlorogenic acid on the formation of colored EGCG enzymatic oxidation products, the variation of oxidation products on the oolongtheanin pathway was semi-quantitatively determined. The result showed chlorogenic acid significantly inhibited the formation of colored oxidation products, thus lightened the color of EGCG oxidation mixture. The addition of chlorogenic acid influences the process of tea polyphenols' enzymatic oxidation.


Assuntos
Catequina , Ácido Clorogênico , Catequina/química , Oxirredução , Espectrometria de Massas , Chá/química
3.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36382683

RESUMO

Maillard reaction is a non-enzymatic thermal reaction during food processing and storage. It massively contributes to the flavor, color, health benefits and safety of foods and could be briefly segmented into initial, intermediate and final stages with the development of a cascade of chemical reactions. During thermal reaction of food ingredients, sugar, protein and amino acids are usually the main substrates, and polyphenols co-existed in food could also participate in the Maillard reaction as a modulator. Polyphenols including flavan-3-ols, hydroxycinnamic acids, flavonoids, and tannins have shown various effects throughout the process of Maillard reaction, including conjugating amino acids/sugars, trapping α-dicarbonyls, capturing Amadori rearrangement products (ARPs), as well as decreasing acrylamide and 5-hydroxymethylfurfural (5-HMF) levels. These effects significantly influenced the flavor, taste and color of processed foods, and also decreased the hazard products' level. The chemical mechanism of polyphenols-Maillard products involved the scavenging of radicals, as well as nucleophilic addition and substitution reactions. In the present review, we concluded and discussed the interaction of polyphenols and Maillard reaction, and proposed some perspectives for future studies.


HighlightsFood polyphenols regulate Maillard reaction through substrates, initial, intermediate and final stages/products of Maillard reaction.The trapping ability of food polyphenols on α-dicarbonyls relied on the structural properties, and was also affected by reaction conditions such as pH value.Food polyphenols could act as potential inhibitors toward the formation of harmful compounds during advanced and final stages of Maillard reaction.The chemical mechanism of polyphenols-Maillard reaction products involved the scavenging of radicals, as well as nucleophilic addition and substitution.

4.
Food Funct ; 13(11): 6139-6151, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35579412

RESUMO

Tea cream is a kind of turbid substance commonly existing in tea infusion and tea beverage upon cooling. Herein, a comparative study was conducted on the supernatant and cream from black tea infusion in terms of antioxidant, anti-inflammatory and enzyme inhibitory activities, and chemical composition. Ultraviolet-visible (UV-vis) spectrometry and high-performance liquid chromatography (HPLC) analysis showed that the contents of protein, polyphenols, theaflavins, thearubigins, theabrownins, and caffeine in cream were significantly higher than those in the supernatant. The contents of Al, Ca, Cu, and Fe elements in cream were higher than those in the supernatant. However, higher levels of monosaccharides and free amino acids were detected in the supernatant compared with cream. The ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) based metabolomics analysis revealed that the main marker compounds between the supernatant and the cream were organic acids, phenolic acids, and flavan-3-ols and their oxidation products, flavonol glycosides and amino acids. The cream showed better antioxidant and anti-inflammatory, as well as α-amylase and α-glycosidase inhibitory activities than the supernatant, because it contained higher contents of polyphenols than the supernatant. The present study expanded the new vision towards the cream of black tea infusion.


Assuntos
Camellia sinensis , Chá , Aminoácidos , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Antioxidantes/análise , Antioxidantes/farmacologia , Camellia sinensis/química , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/química , Polifenóis/química , Chá/química , alfa-Amilases
5.
Food Chem ; 374: 131796, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34906807

RESUMO

Six grades of Huangshan Maofeng (HSMF) green tea were studied by LC-MS based metabolomics combined with sensory evaluation on bitterness, astringency and sweet aftertaste. Although there was no significant correlation (p > 0.05) between tea grades and the contents of total polyphenols and flavonoids, non-targeted metabolomics revealed that all grades of tea could be classified into two groups, group 1 (T1, T2) and group 2 (T3, 1, 2, 3). The main marker compounds responsible for distinguishing the two groups were procyanidins, flavonoid glycosides, and four hydrolysable tannins, including monogalloyl glucose, digalloyl glucose, trigalloyl glucose and galloyl-hexahydroxydiphenoyl-glucose. The Pearson correlation coefficients of these hydrolysable tannins with HSMF green tea grades were between 0.82 and 0.95. Furthermore, their Pearson correlation coefficients regarding sweet aftertaste were in the range of 0.73-0.83. This study suggested combination of metabolomics and sensory evaluation could provide an insight in searching for more potential taste-active components.


Assuntos
Espectrometria de Massas em Tandem , Chá , Cromatografia Líquida , Metabolômica , Polifenóis/análise
6.
Adv Food Nutr Res ; 98: 1-33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34507639

RESUMO

Polyphenols widely exists in various foods, including main crops, fruits, beverages and some wines. Famous representatives of polyphenols, such as resveratrol in red wine, (-)-epigallocatechin gallate in green tea, chlorogenic acid in coffee, anthocyanins in colored fruits, procyanidins in grape seed have become hot research topics in food science and nutrition. There have been thousands of papers on the biochemistry, chemistry, nutritional values and population-based investigations of dietary polyphenols. In this chapter, we reviewed the published articles and database of dietary polyphenols to draw a profile for the classification, structural identification, and biological activities mainly based on enzymes, cell bioassay and animal models, as well as the population-based investigation results. The typical compound and its health benefits for each category of polyphenols was also introduced. The identification of dietary polyphenols could be solved by combined spectroscopy methods, of which the liquid chromatography tandem mass spectrometry is highlighted to greatly increase the efficiency on structural identification. Although the population-based investigation showed some controversial results for health benefits, the multi-functions of dietary polyphenols on preventing metabolic syndromes, various cancers and neurodegenerative disease have attracted much attention.


Assuntos
Doenças Neurodegenerativas , Vinho , Animais , Antocianinas/análise , Humanos , Polifenóis/análise , Polifenóis/farmacologia , Chá , Vinho/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA