Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 755: 109964, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527699

RESUMO

Amorphous silica has been approved as a food and pharmaceutical additive. However, its potential to enhance the carcinogenicity of epithelial cells is incontrovertible. With their expanded surface area per unit mass and distinctive cellular incorporation, nano-sized silica particles (nSPs) exhibit heightened cytotoxicity compared to micrometer-sized counterparts. The precise effect of nSPs on the generation of small extracellular vesicles (sEVs) within endosomes after cellular uptake remains unclear. In the present study, we explored the secretion of sEVs from cells and their functional implications following exposure to nSPs. Our findings demonstrate that nSP50 exposure not only induced epithelial-mesenchymal transition (EMT) but also promoted the maturation of multivesicular endosomes (MVEs) along with the secretion of sEVs in A549 cells. Inhibition of sEV secretion using GW4869 and apoptosis activator 2 exacerbated nSP50-induced EMT, indicating that sEV secretion may suppress EMT. Analysis of the function of sEV in a cell-free system revealed that co-incubation of sEVs with nSP50 led to the formation of micrometer-sized aggregates, which exhibited limited uptake efficiency within A549 cells. These results strongly suggest that the secretion of sEVs plays a protective role against the cytotoxicity attributed to nSP50 exposure.

2.
Int J Cancer ; 154(5): 895-911, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907830

RESUMO

Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) cells have high metastatic potential. Recent research has revealed that the interaction of between tumor cells and the surrounding stroma plays an important role in tumor invasion and metastasis. In this study, we showed the prognostic value of expression of SPARC, an extracellular matrix protein with multiple cellular functions, in normal adjacent tissues (NAT) surrounding NPC. In the immunohistochemical analysis of 51 NPC biopsy specimens, SPARC expression levels were significantly elevated in the NAT of EBER (EBV-encoded small RNA)-positive NPC compared to that in the NAT of EBER-negative NPC. Moreover, increased SPARC expression in NAT was associated with a worsening of overall survival. The enrichment analysis of RNA-seq of publicly available NPC and NAT surrounding NPC data showed that high SPARC expression in NPC was associated with epithelial mesenchymal transition promotion, and there was a dynamic change in the gene expression profile associated with interference of cellular proliferation in NAT, including SPARC expression. Furthermore, EBV-positive NPC cells induce SPARC expression in normal nasopharyngeal cells via exosomes. Induction of SPARC in cancer-surrounding NAT cells reduced intercellular adhesion in normal nasopharyngeal structures and promoted cell competition between cancer cells and normal epithelial cells. These results suggest that epithelial cells loosen their own binding with the extracellular matrix as well as stromal cells, facilitating the invasion of tumor cells into the adjacent stroma by activating cell competition. Our findings reveal a new mechanism by which EBV creates a pro-metastatic microenvironment by upregulating SPARC expression in NPC.


Assuntos
Infecções por Vírus Epstein-Barr , Exossomos , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/metabolismo , Herpesvirus Humano 4/genética , Neoplasias Nasofaríngeas/patologia , Prognóstico , Exossomos/metabolismo , Microambiente Tumoral , Osteonectina/genética , Osteonectina/metabolismo
3.
Oncol Lett ; 25(6): 222, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37153065

RESUMO

In our previous study, osteosarcoma advanced locally, and metastasis was promoted through the secretion of large number of small extracellular vesicles, followed by suppressing osteoclastogenesis via the upregulation of microRNA (miR)-146a-5p. An additional 12 miRNAs in small extracellular vesicles were also detected ≥6× as frequently in high-grade malignancy with the capacity to metastasize as in those with a low metastatic potential. However, the utility of these 13 miRNAs for determining the prognosis or diagnosis of osteosarcoma has not been validated in the clinical setting. In the present study, the utility of these miRNAs as prognostic and diagnostic markers was therefore assessed. In total, 30 patients with osteosarcoma were retrospectively reviewed, and the survival rate was compared according to the serum miRNA levels in 27 patients treated with chemotherapy and surgery. In addition, to confirm diagnostic competency for osteosarcoma, the serum miRNA levels were compared with those in patients with other bone tumors (n=112) and healthy controls (n=275). The patients with osteosarcoma with high serum levels of several miRNAs (miR-146a-5p, miR-1260a, miR-487b-3p, miR-1260b and miR-4758-3p) exhibited an improved survival rate compared with those with low levels. In particular, patients with high serum levels of miR-1260a exhibited a significantly improved overall survival rate, metastasis-free survival rate and disease-free survival rate compared with those with low levels. Thus, serum miR-1260a may potentially be a prognostic marker for patients with osteosarcoma. Moreover, patients with osteosarcoma had higher serum miR-1261 levels than those with benign or intermediate-grade bone tumors and thus may be a potential therapeutic target, in addition to being useful for differentiating whether or not a bone tumor is high-grade. A larger investigation is required to clarify the actual utility of these miRNAs in the clinical setting.

4.
Pharm Res ; 40(4): 927-935, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36163411

RESUMO

PURPOSE: To inhibit the transmission of SARS-CoV-2, we developed engineered exosomes that were conjugated with anti-spike nanobodies and type I interferon ß (IFN-ß). We evaluated the efficacy and potency of nanobody-IFN-ß conjugated exosomes to treatment of SARS-CoV-2 infection. METHODS: Milk fat globule epidermal growth factor 8 (MFG-E8) is a glycoprotein that binds to phosphatidylserine (PS) exposed on the exosomes. We generated nanobody-IFN-ß conjugated exosomes by fusing an anti-spike nanobody and IFN-ß with MFG-E8. We used the SARS-CoV-2 pseudovirus with the spike of the D614G mutant that encodes ZsGreen to mimic the infection process of the SARS-CoV-2. The SARS-CoV-2 pseudovirus was infected with angiotensin-converting enzyme-2 (ACE2) expressing adenocarcinomic human alveolar basal epithelial cells (A549) or ACE2 expressing HEK-blue IFNα/ß cells in the presence of nanobody-IFN-ß conjugated exosomes. By assessing the expression of ZsGreen in target cells and the upregulation of interferon-stimulated genes (ISGs) in infected cells, we evaluated the anti-viral effects of nanobody-IFN-ß conjugated exosomes. RESULTS: We confirmed the anti-spike nanobody and IFN-ß expressions on the exosomes. Exosomes conjugated with nanobody-hIFN-ß inhibited the interaction between the spike protein and ACE2, thereby inhibiting the infection of host cells with SARS-CoV-2 pseudovirus. At the same time, IFN-ß was selectively delivered to SARS-CoV-2 infected cells, resulting in the upregulation of ISGs expression. CONCLUSION: Exosomes conjugated with nanobody-IFN-ß may provide potential benefits in the treatment of COVID-19 because of the cooperative anti-viral effects of the anti-spike nanobody and the IFN-ß.


Assuntos
COVID-19 , Exossomos , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Interferon beta , Ligação Proteica , Anticorpos , Antivirais
5.
Methods Mol Biol ; 2466: 23-36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585308

RESUMO

Small extracellular vesicles (SEVs) secreted from various cells are lipid bilayer vesicles, 30-150 nm in size, that carry proteins, nucleic acids, and lipids as cargos to other cells. They include exosomes, which are generated in multivesicular endosomes (MVEs) and secreted upon fusion of MVEs with plasma membranes and a part of microvesicles, which directly bud from plasma membranes. SEVs have attracted attention as diagnostic and drug discovery targets, since it has been demonstrated that SEVs are involved in the intercellular communication in many diseases and physiological phenomena such as cancer, neurodegenerative diseases, and immunity. There are five isolation methods for SEVs, which include ultracentrifugation, density gradient ultracentrifugation, polymer precipitation, affinity isolation, and size-exclusion chromatography. The affinity isolation, which isolates SEVs using magnetic beads conjugated with binding molecules such as antibodies, has the ability to isolate highly pure SEVs in character. However, the population of SEVs is limited by the binding molecules and it is difficult to elute intact SEVs from the antibody beads. In this chapter, we present a TIM4-affinity isolation method that targets phosphatidylserine (PS), a component of the SEV membrane. TIM4 binds to PS in a Ca2+-dependent manner, which enables the elution of intact SEVs from TIM4-beads in the presence of the chelating reagent ethylenediaminetetraacetic acid (EDTA). The TIM4-affinity isolation method helps overcome the disadvantages of the affinity isolation method and enables the isolation of heterogeneous SEVs at high purity. This method will facilitate the functional analysis of SEVs, development of diagnostic methods, and drug development of engineered SEVs.


Assuntos
Exossomos , Vesículas Extracelulares , Anticorpos/metabolismo , Comunicação Celular , Vesículas Extracelulares/metabolismo , Proteínas de Membrana , Fosfatidilserinas/metabolismo , Ultracentrifugação
6.
Front Mol Biosci ; 9: 839917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402512

RESUMO

Hereditary (variant) transthyretin amyloidosis (ATTRv amyloidosis), which is caused by variants in the transthyretin (TTR) gene, leads to TTR amyloid deposits in multiple organs and various symptoms such as limb ataxia, muscle weakness, and cardiac failure. Interaction between amyloid proteins and extracellular vesicles (EVs), which are secreted by various cells, is known to promote the clearance of the proteins, but it is unclear whether EVs are involved in the formation and deposition of TTR amyloid in ATTRv amyloidosis. To clarify the relationship between ATTRv amyloidosis and EVs, serum-derived EVs were analyzed. In this study, we showed that cell-derived EVs are involved in the formation of TTR amyloid deposits on the membrane of small EVs, as well as the deposition of TTR amyloid in cells. Human serum-derived small EVs also altered the degree of aggregation and deposition of TTR. Furthermore, the amount of TTR aggregates in serum-derived small EVs in patients with ATTRv amyloidosis was lower than that in healthy controls. These results indicate that EVs contribute to the metabolism of TTR amyloid, and suggest that TTR in serum-derived small EVs is a potential target for future ATTRv amyloidosis diagnosis and therapy.

7.
Sci Rep ; 11(1): 13471, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188113

RESUMO

Extracellular vesicles (EVs) are secreted from most cells and play important roles in cell-cell communication by transporting proteins, lipids, and nucleic acids. As the involvement of EVs in diseases has become apparent, druggable regulators of EV secretion are required. However, the lack of a highly sensitive EV detection system has made the development of EV regulators difficult. We developed an ELISA system using a high-affinity phosphatidylserine-binder TIM4 to capture EVs and screened a 1567-compound library. Consequently, we identified one inhibitor and three activators of EV secretion in a variety of cells. The inhibitor, apoptosis activator 2, suppressed EV secretion via a different mechanism and had a broader cellular specificity than GW4869. Moreover, the three activators, namely cucurbitacin B, gossypol, and obatoclax, had broad cellular specificity, including HEK293T cells and human mesenchymal stem cells (hMSCs). In vitro bioactivity assays revealed that some regulators control EV secretion from glioblastoma and hMSCs, which induces angiogenesis and protects cardiomyocytes against apoptosis, respectively. In conclusion, we developed a high-throughput method to detect EVs with high sensitivity and versatility, and identified four compounds that can regulate the bioactivity of EVs.


Assuntos
Apoptose/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos , Células HCT116 , Células HEK293 , Humanos , Células Jurkat , Células K562 , Camundongos , Células NIH 3T3 , Células THP-1
8.
Front Oncol ; 11: 667109, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017686

RESUMO

Osteosarcoma is the most frequent type of primary bone tumor in children and adolescents, thus care for patients with malignant osteosarcoma is strongly required. The roles of small extracellular vesicles (SEVs) in enhancing metastases have been demonstrated in multiple tumors, but they are still poorly understood in osteosarcoma. Hence, this study investigated the effects of SEVs on progression and the tumor microenvironment in mice and patients. In an orthotopic implantation study, we found that osteosarcoma-derived SEVs had the potential to enhance metastases and angiogenesis. In addition, osteosarcoma-derived SEVs decreased the number of mature osteoclasts in vivo. In vitro osteoclastogenesis studies revealed that the inhibition of osteoclast maturation by osteosarcoma-derived SEVs was mediated by suppressing the NF-κB signal pathway. MicroRNA analysis of SEVs from different malignant human osteosarcomas revealed that miR-146a-5p was involved in the inhibition of osteoclastogenesis. In osteosarcoma patients, lower numbers of osteoclasts in biopsy specimens at the first visits were correlated with higher malignancy. These findings indicated that osteosarcoma-derived SEVs enhance distant metastasis of osteosarcomas by inhibiting osteoclast maturation, which may be a useful prognostic marker. This diagnostic method may enable to predict malignancy at early stage, and help to provide optimal care to patients with risk of high malignancy.

9.
Nanoscale ; 13(13): 6661-6677, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885545

RESUMO

Exosomes have recently gained interest as mediators of cell-to-cell communication and as potential biomarkers for cancer and other diseases. They also have potential as nanocarriers for drug delivery systems. Therefore, detailed structural, molecular, and biomechanical characterization of exosomes is of great importance for developing methods to detect and identify the changes associated with the presence of cancer and other diseases. Here, we employed three-dimensional atomic force microscopy (3D-AFM) to reveal the structural and nanomechanical properties of exosomes at high spatial resolution in physiologically relevant conditions. The substructural details of exosomes released from three different cell types were determined based on 3D-AFM force mapping. The resulting analysis revealed the presence of distinct local domains bulging out from the exosome surfaces, which were associated with the exosomal membrane proteins present on the outer surface. The nanomechanical properties of individual exosomes were determined from the 3D-force maps. We found a considerably high elastic modulus, ranging from 50 to 350 MPa, as compared to that obtained for synthetic liposomes. Moreover, malignancy-dependent changes in the exosome mechanical properties were revealed by comparing metastatic and nonmetastatic tumor cell-derived exosomes. We found a clear difference in their Young's modulus values, suggesting differences in their protein profiles and other exosomal contents. Exosomes derived from a highly aggressive and metastatic k-ras-activated human osteosarcoma (OS) cell line (143B) showed a higher Young's modulus than that derived from a nonaggressive and nonmetastatic k-ras-wildtype human OS cell line (HOS). The increased elastic modulus of the 143B cell-derived exosomes was ascribed to the presence of abundant specific proteins responsible for elastic fiber formation as determined by mass spectroscopy and confirmed by western blotting and ELISA. Therefore, we conclude that exosomes derived from metastatic tumor cells carry an exclusive protein content that differs from their nonmetastatic counterparts, and thus they exhibit different mechanical characteristics. Discrimination between metastatic and nonmetastatic malignant cell-derived exosomes would be of great importance for studying exosome biological functions and using them as diagnostic biomarkers for various tumor types. Our findings further suggest that metastatic tumor cells release exosomes that express increased levels of elastic fiber-associated proteins to preserve their softness.


Assuntos
Neoplasias Ósseas , Exossomos , Osteossarcoma , Linhagem Celular Tumoral , Módulo de Elasticidade , Humanos , Microscopia de Força Atômica
10.
Cell Death Dis ; 12(4): 322, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771977

RESUMO

Accumulating evidence indicates the presence of cytoplasmic DNAs in various types of malignant cells, and its involvement in anti-cancer drug- or radiotherapy-mediated DNA damage response and replication stress. However, the pathophysiological roles of cytoplasmic DNAs in leukemias remain largely unknown. We observed that during hematopoietic stem cell transplantation (HSCT) in mouse myeloid leukemia models, double-stranded (ds)DNAs were constitutively secreted in the form of extracellular vesicles (EVs) from myeloid leukemia cells and were transferred to the donor cells to dampen their hematopoietic capabilities. Subsequent analysis of cytoplasmic DNA dynamics in leukemia cells revealed that autophagy regulated cytoplasmic dsDNA accumulation and subsequent redistribution into EVs. Moreover, accumulated cytoplasmic dsDNAs activated STING pathway, thereby reducing leukemia cell viability through reactive oxygen species (ROS) generation. Pharmaceutical inhibition of autophagosome formation induced cytoplasmic DNA accumulation, eventually triggering cytoplasmic DNA sensing pathways to exert cytotoxicity, preferentially in leukemia cells. Thus, manipulation of cytoplasmic dsDNA dynamics can be a novel and potent therapeutic strategy for myeloid leukemias.


Assuntos
Morte Celular/genética , DNA/genética , Leucemia Mieloide/genética , Animais , Humanos , Masculino , Camundongos , Transfecção
11.
Int J Cancer ; 148(8): 1982-1992, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33252827

RESUMO

Cancer-associated cachexia (CAC) is a common syndrome in cancer patients and is characterized by loss of body weight accompanied by the atrophy of fat and skeletal muscle. Metabolic changes are a critical factor in CAC; however, the mechanisms through which tumors inhibit adipogenesis and promote lipolysis are poorly understood. To clarify these mechanisms, we investigated adipogenesis-limiting factors released by tumors in a cell culture system. We identified proliferin-1 (PLF-1), a member of the growth hormone/prolactin gene family, as a key factor secreted from certain tumors that inhibited preadipocyte maturation and promoted the lipolysis of mature adipocytes. Importantly, mice transplanted with PLF-1-depleted tumor cells were protected from fat loss due to CAC. These data show that tumor-secreted PLF-1 plays an essential role in impaired adipogenesis and accelerated lipolysis and is a potential therapeutic target against CAC.


Assuntos
Adipogenia/genética , Caquexia/genética , Lipólise/genética , Neoplasias/genética , Prolactina/genética , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Peso Corporal/genética , Caquexia/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Neoplasias/metabolismo , Neoplasias/patologia , Prolactina/metabolismo
12.
Nat Commun ; 11(1): 4607, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929081

RESUMO

Drug tolerance is the basis for acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) including osimertinib, through mechanisms that still remain unclear. Here, we show that while AXL-low expressing EGFR mutated lung cancer (EGFRmut-LC) cells are more sensitive to osimertinib than AXL-high expressing EGFRmut-LC cells, a small population emerge osimertinib tolerance. The tolerance is mediated by the increased expression and phosphorylation of insulin-like growth factor-1 receptor (IGF-1R), caused by the induction of its transcription factor FOXA1. IGF-1R maintains association with EGFR and adaptor proteins, including Gab1 and IRS1, in the presence of osimertinib and restores the survival signal. In AXL-low-expressing EGFRmut-LC cell-derived xenograft and patient-derived xenograft models, transient IGF-1R inhibition combined with continuous osimertinib treatment could eradicate tumors and prevent regrowth even after the cessation of osimertinib. These results indicate that optimal inhibition of tolerant signals combined with osimertinib may dramatically improve the outcome of EGFRmut-LC.


Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Acrilamidas/farmacologia , Idoso de 80 Anos ou mais , Compostos de Anilina/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Imidazóis/farmacologia , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Pirazinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Regulação para Cima/efeitos dos fármacos , Receptor Tirosina Quinase Axl
13.
Carcinogenesis ; 41(9): 1238-1245, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32463428

RESUMO

Glioma persists as one of the most aggressive primary tumors of the central nervous system. Glioma cells are known to communicate with tumor-associated macrophages/microglia via various cytokines to establish the tumor microenvironment. However, how extracellular vesicles (EVs), emerging regulators of cell-cell communication networks, function in this process is still elusive. We report here that glioma-derived EVs promote tumor progression by affecting microglial gene expression in an intracranial implantation glioma model mouse. The gene expression of thrombospondin-1 (Thbs1), a negative regulator of angiogenesis, was commonly downregulated in microglia after the addition of EVs isolated from different glioma cell lines, which endogenously expressed Wilms tumor-1 (WT1). Conversely, WT1-deficiency in the glioma-derived EVs significantly attenuated the Thbs1 downregulation and suppressed the tumor progression. WT1 was highly expressed in EVs obtained from the cerebrospinal fluid of human patients with malignant glioma. Our findings establish a novel model of tumor progression via EV-mediated WT1-Thbs1 intercellular regulatory pathway, which may be a future diagnostic or therapeutic target.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Vesículas Extracelulares/patologia , Glioma/patologia , Microglia/patologia , Proteínas WT1/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Comunicação Celular , Proliferação de Células , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microglia/metabolismo , Prognóstico , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia , Proteínas WT1/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
FASEB J ; 34(2): 2792-2811, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31912559

RESUMO

While adipose tissue is required to maintain glucose metabolism, excessive calorie intake induces obesity via mechanisms including accelerated proliferation and differentiation of preadipocytes, leading to insulin resistance. Here, we investigated the role of myoferlin (MYOF), a ferlin family protein, in regulating glucose metabolism by mainly focusing on its unknown role in adipose tissue. Whereas young MYOF knockout (KO) mice on a normal diet showed aggravated glucose tolerance and insulin sensitivity, those on a high-fat diet (HFD) showed preserved glucose tolerance with an attenuated gain of body weight, reduced visceral fat deposits, and less severe fatty liver. The Adipose MYOF expression was reduced by aging but was restored by an HFD along with the retained expression of NFAT transcription factors. Loss-of-function of MYOF in preadipocytes suppressed proliferation and differentiation into mature adipocytes along with the decreased expression of genes involved in adipogenesis. The MYOF expression in preadipocytes was reduced with differentiation. Attenuated obesity in MYOF KO mice on an HFD was also accompanied with increased oxygen consumption by an unidentified mechanism and with reduced adipose inflammation due to less inflammatory macrophages. These insights suggest that the multifunctional roles of MYOF involve the regulation of preadipocyte function and affect glucose metabolism bidirectionally depending on consumed calories.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Adiposidade/fisiologia , Glucose/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL
15.
Sci Rep ; 9(1): 15788, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673081

RESUMO

Current serum hepatocellular carcinoma (HCC) biomarkers are insufficient for early diagnosis. We aimed to clarify whether serum MFG-E8 can serve as a diagnostic or prognostic biomarker of HCC. Serum MFG-E8 levels of 282 HCC patients, who underwent primary hepatectomy, were examined by ELISA. We also quantified serum MFG-E8 levels in patients with chronic hepatitis (CH), liver cirrhosis (LC), as well as in healthy volunteers (HVs). Serum MFG-E8 levels were significantly lower in HCC patients than in HVs regardless of the etiology of liver disease (3.6 ± 0.1 vs 5.8 ± 0.2 ng/mL, p < 0.0001), and recovered after treatment of HCC. Serum MFG-E8 levels in CH and LC patients were comparable to those in HVs. Serum MFG-E8 could detect HCCs, even α-fetoprotein (AFP)-negative or des-γ-carboxy prothrombin (DCP)-negative HCCs, in CH and LC patients. Our new HCC prediction model using MFG-E8 and DCP (Logit(p) = 2.619 - 0.809 × serum MFG-E8 + 0.0226 × serum DCP) distinguished HCC patients from CH and LC patients with an area under the curve of 0.923, a sensitivity of 81.1%, and a specificity of 89.8%. Futhermore, low preoperative serum MFG-E8 was an independent predictor of poor overall survival. Thus, serum MFG-E8 could serve as a feasible diagnostic and prognostic biomarker for HCC.


Assuntos
Antígenos de Superfície/sangue , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas do Leite/sangue , Proteínas de Neoplasias/sangue , Cuidados Pré-Operatórios , Adulto , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/cirurgia , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Taxa de Sobrevida
16.
Biol Pharm Bull ; 42(6): 977-981, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155594

RESUMO

Hepatitis C virus (HCV) infection leads to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma in 50-80% of the cases. Interferons (IFNs) and the nucleoside analog ribavirin form the basis of the treatment of this infection but are not considered sufficiently effective and cause several side effects. In this study, we developed a novel viral-specific drug delivery method. Enveloped viruses, including HCV, expose an anionic phospholipid, phosphatidylserine (PS), on their surface to mediate their binding and entry into cells for infection. To target such exposed PS on HCV, we developed a chimeric recombinant protein containing human IFN and mouse lactadherin (also known as milk fat globule epidermal growth factor 8), which binds with high affinity to PS. The IFN-lactadherin fusion protein showed a high binding affinity toward PS and HCV and consequently blocked viral replication in the infected cells more efficiently than conventional IFN. Overall, these data suggest that conjugation with lactadherin facilitates the delivery of any protein drug to PS-exposing enveloped viruses.


Assuntos
Antígenos de Superfície , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Interferon beta , Proteínas do Leite , Fosfatidilserinas/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , DNA Complementar , Células HEK293 , Hepacivirus/fisiologia , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Replicação Viral/efeitos dos fármacos
17.
Sci Rep ; 9(1): 4695, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886174

RESUMO

Gene correction of induced pluripotent stem cells (iPSCs) has therapeutic potential for treating homozygous familial hypercholesterolemia (HoFH) associated with low-density lipoprotein (LDL) receptor (LDLR) dysfunction. However, few data exist regarding the functional recovery and immunogenicity of LDLR gene-corrected iPSC-derived hepatocyte-like cells (HLCs) obtained from an HoFH patient. Therefore, we generated iPSC-derived HLCs from an HoFH patient harbouring a point mutation (NM_000527.4:c.901 G > T) in exon 6 of LDLR, and examined their function and immunogenicity. From the patient's iPSCs, one homozygous gene-corrected HoFH-iPSC clone and two heterozygous clones were generated using the CRISPR/Cas9 method. Both types of iPSC-derived HLCs showed recovery of the function of LDL uptake in immunofluorescence staining analysis. Furthermore, these gene-corrected iPSC-derived HLCs showed little immunogenicity against the patient's peripheral blood mononuclear cells in a cell-mediated cytotoxicity assay. These results demonstrate that LDL uptake of iPSC-derived HLCs from HoFH can be restored by gene correction without the appearance of further immunogenicity, suggesting that gene-corrected iPSC-derived HLCs are applicable to the treatment of HoFH.


Assuntos
Terapia Biológica/métodos , Terapia Genética/métodos , Hepatócitos/citologia , Hiperlipoproteinemia Tipo II/imunologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Lipoproteínas LDL/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , LDL-Colesterol/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citotoxicidade Imunológica , Hepatócitos/metabolismo , Homozigoto , Humanos , Hiperlipoproteinemia Tipo II/genética , Células-Tronco Pluripotentes Induzidas/transplante , Lipoproteínas LDL/genética , Mutação/genética
18.
J Exp Med ; 216(5): 1027-1037, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30918005

RESUMO

The autoimmune regulator (Aire) serves an essential function for T cell tolerance by promoting the "promiscuous" expression of tissue antigens in thymic epithelial cells. Aire is also detected in rare cells in peripheral lymphoid organs, but the identity of these cells is poorly understood. Here, we report that Aire protein-expressing cells in lymph nodes exhibit typical group 3 innate lymphoid cell (ILC3) characteristics such as lymphoid morphology, absence of "classical" hematopoietic lineage markers, and dependence on RORγt. Aire+ cells are more frequent among lineage-negative RORγt+ cells of peripheral lymph nodes as compared with mucosa-draining lymph nodes, display a unique Aire-dependent transcriptional signature, express high surface levels of MHCII and costimulatory molecules, and efficiently present an endogenously expressed model antigen to CD4+ T cells. These findings define a novel type of ILC3-like cells with potent APC features, suggesting that these cells serve a function in the control of T cell responses.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfonodos/citologia , Linfócitos/imunologia , Linfócitos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Antígenos CD11/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/metabolismo , Imunidade Inata , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fenótipo , Transcrição Gênica , Proteína AIRE
19.
J Immunol ; 201(10): 3051-3057, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30333125

RESUMO

During inflammation, phagocytes release digestive enzymes from lysosomes to degrade harmful cells such as pathogens and tumor cells. However, the molecular mechanisms regulating this process are poorly understood. In this study, we identified myoferlin as a critical regulator of lysosomal exocytosis by mouse phagocytes. Myoferlin is a type II transmembrane protein with seven C2 domains in the cytoplasmic region. It localizes to lysosomes and mediates their fusion with the plasma membrane upon calcium stimulation. Myoferlin promotes the release of lysosomal contents, including hydrolytic enzymes, which increase cytotoxicity. These data demonstrate myoferlin's critical role in lysosomal exocytosis by phagocytes, providing novel insights into the mechanisms of inflammation-related cellular injuries.


Assuntos
Citotoxicidade Imunológica/imunologia , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Fagócitos/metabolismo , Animais , Exocitose/imunologia , Lisossomos/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/imunologia , Células NIH 3T3 , Fagócitos/imunologia
20.
Biol Pharm Bull ; 41(8): 1119-1125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30068858

RESUMO

Exosomes, in a broad sense extracellular vesicles (EVs), are secreted from several cells and also exist in cerebrospinal fluid (CSF); they contribute to signal transduction not only between neural cells but also among hematopoietic cells. In addition to the peripheral nervous system, the association of regeneration and EVs has also been reported in the central nervous system, for example, following a spinal cord injury. Furthermore, it has become clear that major causative factors of neurodegenerative diseases are transmitted by EVs; thus, EVs are involved in the pathogenesis of neurodegenerative diseases. In particular, we would like to outline the relationship between neurophysiology and neurological disorders centered on EV-mediated communication between neural and glial cells.


Assuntos
Vesículas Extracelulares/fisiologia , Neurônios/fisiologia , Animais , Vesículas Extracelulares/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Regeneração , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA