Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(12): 2103-2111, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37924809

RESUMO

Hereditary spastic parapareses (HSPs) are clinically heterogeneous motor neuron diseases with variable age of onset and severity. Although variants in dozens of genes are implicated in HSPs, much of the genetic basis for pediatric-onset HSP remains unexplained. Here, we re-analyzed clinical exome-sequencing data from siblings with HSP of unknown genetic etiology and identified an inherited nonsense mutation (c.523C>T [p.Arg175Ter]) in the highly conserved RAB1A. The mutation is predicted to produce a truncated protein with an intact RAB GTPase domain but without two C-terminal cysteine residues required for proper subcellular protein localization. Additional RAB1A mutations, including two frameshift mutations and a mosaic missense mutation (c.83T>C [p.Leu28Pro]), were identified in three individuals with similar neurodevelopmental presentations. In rescue experiments, production of the full-length, but not the truncated, RAB1a rescued Golgi structure and cell proliferation in Rab1-depleted cells. In contrast, the missense-variant RAB1a disrupted Golgi structure despite intact Rab1 expression, suggesting a dominant-negative function of the mosaic missense mutation. Knock-down of RAB1A in cultured human embryonic stem cell-derived neurons resulted in impaired neuronal arborization. Finally, RAB1A is located within the 2p14-p15 microdeletion syndrome locus. The similar clinical presentations of individuals with RAB1A loss-of-function mutations and the 2p14-p15 microdeletion syndrome implicate loss of RAB1A in the pathogenesis of neurodevelopmental manifestations of this microdeletion syndrome. Our study identifies a RAB1A-related neurocognitive disorder with speech and motor delay, demonstrates an essential role for RAB1a in neuronal differentiation, and implicates RAB1A in the etiology of the neurodevelopmental sequelae associated with the 2p14-p15 microdeletion syndrome.


Assuntos
Haploinsuficiência , Paraplegia Espástica Hereditária , Criança , Humanos , Haploinsuficiência/genética , Mutação , Mutação de Sentido Incorreto/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Complexo de Golgi/metabolismo , Paraplegia Espástica Hereditária/genética
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121658

RESUMO

Pathogenic variants in surfactant proteins SP-B and SP-C cause surfactant deficiency and interstitial lung disease. Surfactant proteins are synthesized as precursors (proSP-B, proSP-C), trafficked, and processed via a vesicular-regulated secretion pathway; however, control of vesicular trafficking events is not fully understood. Through the Undiagnosed Diseases Network, we evaluated a child with interstitial lung disease suggestive of surfactant deficiency. Variants in known surfactant dysfunction disorder genes were not found in trio exome sequencing. Instead, a de novo heterozygous variant in RAB5B was identified in the Ras/Rab GTPases family nucleotide binding domain, p.Asp136His. Functional studies were performed in Caenorhabditis elegans by knocking the proband variant into the conserved position (Asp135) of the ortholog, rab-5 Genetic analysis demonstrated that rab-5[Asp135His] is damaging, producing a strong dominant negative gene product. rab-5[Asp135His] heterozygotes were also defective in endocytosis and early endosome (EE) fusion. Immunostaining studies of the proband's lung biopsy revealed that RAB5B and EE marker EEA1 were significantly reduced in alveolar type II cells and that mature SP-B and SP-C were significantly reduced, while proSP-B and proSP-C were normal. Furthermore, staining normal lung showed colocalization of RAB5B and EEA1 with proSP-B and proSP-C. These findings indicate that dominant negative-acting RAB5B Asp136His and EE dysfunction cause a defect in processing/trafficking to produce mature SP-B and SP-C, resulting in interstitial lung disease, and that RAB5B and EEs normally function in the surfactant secretion pathway. Together, the data suggest a noncanonical function for RAB5B and identify RAB5B p.Asp136His as a genetic mechanism for a surfactant dysfunction disorder.


Assuntos
Variação Genética/genética , Precursores de Proteínas/genética , Proteína C Associada a Surfactante Pulmonar/genética , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas rab5 de Ligação ao GTP/genética , Células Epiteliais Alveolares/metabolismo , Animais , Caenorhabditis elegans/genética , Humanos , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/genética , Surfactantes Pulmonares/metabolismo
3.
Cell ; 184(4): 856-858, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606984

RESUMO

In this issue of Cell, Ma et al. reveal a mechanistic role for PIEZO1 in iron homeostasis through molecular genetic mouse studies. They also demonstrate implications for human iron overload and deficiency syndromes, susceptibility to malarial infection, and red blood cell turnover in persons of African ancestries.


Assuntos
Ferro , Malária , Animais , Eritrócitos , Homeostase , Humanos , Canais Iônicos/genética , Camundongos
4.
Clin Epigenetics ; 11(1): 60, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30961659

RESUMO

BACKGROUND: Congenital malformations associated with maternal uniparental disomy of chromosome 16, upd(16)mat, resemble those observed in newborns with the lethal developmental lung disease, alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Interestingly, ACDMPV-causative deletions, involving FOXF1 or its lung-specific upstream enhancer at 16q24.1, arise almost exclusively on the maternally inherited chromosome 16. Given the phenotypic similarities between upd(16)mat and ACDMPV, together with parental allelic bias in ACDMPV, we hypothesized that there may be unknown imprinted loci mapping to chromosome 16 that become functionally unmasked by chromosomal structural variants. RESULTS: To identify parent-of-origin biased DNA methylation, we performed high-resolution bisulfite sequencing of chromosome 16 on peripheral blood and cultured skin fibroblasts from individuals with maternal or paternal upd(16) as well as lung tissue from patients with ACDMPV-causative 16q24.1 deletions and a normal control. We identified 22 differentially methylated regions (DMRs) with ≥ 5 consecutive CpG methylation sites and varying tissue-specificity, including the known DMRs associated with the established imprinted gene ZNF597 and DMRs supporting maternal methylation of PRR25, thought to be paternally expressed in lymphoblastoid cells. Lastly, we found evidence of paternal methylation on 16q24.1 near LINC01082 mapping to the FOXF1 enhancer. CONCLUSIONS: Using high-resolution bisulfite sequencing to evaluate DNA methylation across chromosome 16, we found evidence for novel candidate imprinted loci on chromosome 16 that would not be evident in array-based assays and could contribute to the birth defects observed in patients with upd(16)mat or in ACDMPV.


Assuntos
Metilação de DNA , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Dissomia Uniparental/genética , Células Cultivadas , Cromossomos Humanos Par 16/genética , Feminino , Fibroblastos/química , Fibroblastos/citologia , Impressão Genômica , Humanos , Masculino , Pele/química , Pele/citologia
5.
Clin Chim Acta ; 486: 151-155, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30053402

RESUMO

BACKGROUND: Juvenile neuronal ceroid lipofuscinosis (CLN3 disease) is a hereditary progressive neurodegenerative disease well documented among Caucasians, but such clinical data and genetic characterization is lacking among Asian populations. PATIENT AND METHODS: A 13-year-old Chinese girl presented for diagnostic evaluation with retinitis pigmentosa, generalised tonic-clonic seizure and cerebellar ataxia. Electron microscopy of whole blood and skin biopsy, and mutation analysis of CLN3 gene with genomic DNA and cDNA, were performed. RESULTS: Electron microscopy showed vacuolated lymphocytes, and characteristic patterns in eccrine glands suggestive of neuronal ceroid lipofuscinosis. Sequencing of genomic DNA showed homozygous splice site variant NM_000086.2(CLN3):c.906+6T>G, and the pathogenicity of which was confirmed by cDNA sequencing to demonstrate the deletion of a transmembrane domain of the CLN3 protein. The mutant protein was predicted to adversely affect ligand binding of CLN3 as a lysosomal membrane protein. CONCLUSIONS: Here we report the first genetically confirmed CLN3 disease in Chinese, with a novel splice site variant with proposed pathogenetic mechanism relating gene and protein, and highlights the potential ethnic differences in the mutation spectrum. We wish to establish the importance of clinical awareness and laboratory diagnosis of CLN3 disease, especially in the promising age of gene therapy.


Assuntos
Processamento Alternativo/genética , DNA Complementar/genética , Variação Genética/genética , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Adolescente , Sequência de Bases , China , Feminino , Humanos
6.
Am J Hum Genet ; 102(1): 69-87, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290338

RESUMO

Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.


Assuntos
Códon/genética , Estudos de Associação Genética , Mutação de Sentido Incorreto/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Adolescente , Sequência de Aminoácidos , Criança , Estudos de Coortes , Simulação por Computador , Demografia , Feminino , Heterozigoto , Humanos , Masculino , Neurofibromina 1/química , Fenótipo , Adulto Jovem
7.
Am J Hum Genet ; 99(4): 886-893, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27616478

RESUMO

Disruption of the establishment of left-right (L-R) asymmetry leads to situs anomalies ranging from situs inversus totalis (SIT) to situs ambiguus (heterotaxy). The genetic causes of laterality defects in humans are highly heterogeneous. Via whole-exome sequencing (WES), we identified homozygous mutations in PKD1L1 from three affected individuals in two unrelated families. PKD1L1 encodes a polycystin-1-like protein and its loss of function is known to cause laterality defects in mouse and medaka fish models. Family 1 had one fetus and one deceased child with heterotaxy and complex congenital heart malformations. WES identified a homozygous splicing mutation, c.6473+2_6473+3delTG, which disrupts the invariant splice donor site in intron 42, in both affected individuals. In the second family, a homozygous c.5072G>C (p.Cys1691Ser) missense mutation was detected in an individual with SIT and congenital heart disease. The p.Cys1691Ser substitution affects a highly conserved cysteine residue and is predicted by molecular modeling to disrupt a disulfide bridge essential for the proper folding of the G protein-coupled receptor proteolytic site (GPS) motif. Damaging effects associated with substitutions of this conserved cysteine residue in the GPS motif have also been reported in other genes, namely GPR56, BAI3, and PKD1 in human and lat-1 in C. elegans, further supporting the likely pathogenicity of p.Cys1691Ser in PKD1L1. The identification of bi-allelic PKD1L1 mutations recapitulates previous findings regarding phenotypic consequences of loss of function of the orthologous genes in mice and medaka fish and further expands our understanding of genetic contributions to laterality defects in humans.


Assuntos
Alelos , Lateralidade Funcional/genética , Proteínas de Membrana/genética , Mutação , Situs Inversus/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Cisteína/genética , Exoma/genética , Feminino , Doenças Fetais/genética , Cardiopatias Congênitas/genética , Síndrome de Heterotaxia , Homozigoto , Humanos , Recém-Nascido , Íntrons/genética , Masculino , Proteínas de Membrana/química , Camundongos , Pessoa de Meia-Idade , Modelos Moleculares , Mutação de Sentido Incorreto , Oryzias/genética , Linhagem , Splicing de RNA/genética
8.
J Pediatr Gastroenterol Nutr ; 59(1): 17-21, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24614124

RESUMO

Severe congenital hypertriglyceridemia (HTG) is a rare disorder caused by mutations in genes affecting lipoprotein lipase (LPL) activity. Here we report a 5-week-old Hispanic girl with severe HTG (12,031 mg/dL, normal limit 150 mg/dL) who presented with the unusual combination of lower gastrointestinal bleeding and milky plasma. Initial colonoscopy was consistent with colitis, which resolved with reduction of triglycerides. After negative sequencing of the LPL gene, whole-exome sequencing revealed novel compound heterozygous mutations in GPIHBP1. Our study broadens the phenotype of GPIHBP1-associated HTG, reinforces the effectiveness of whole-exome sequencing in Mendelian diagnoses, and implicates triglycerides in gastrointestinal mucosal injury.


Assuntos
Colite/complicações , Exoma/genética , Hipertrigliceridemia/genética , Receptores de Lipoproteínas/genética , Análise Mutacional de DNA , Feminino , Humanos , Hipertrigliceridemia/complicações , Hipertrigliceridemia/congênito , Lactente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA