Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(10): e1011682, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782657

RESUMO

Human cytomegalovirus (HCMV) encodes multiple putative G protein-coupled receptors (GPCRs). US28 functions as a viral chemokine receptor and is expressed during both latent and lytic phases of virus infection. US28 actively promotes cellular migration, transformation, and plays a major role in mediating viral latency and reactivation; however, knowledge about the interaction partners involved in these processes is still incomplete. Herein, we utilized a proximity-dependent biotinylating enzyme (TurboID) to characterize the US28 interactome when expressed in isolation, and during both latent (CD34+ hematopoietic progenitor cells) and lytic (fibroblasts) HCMV infection. Our analyses indicate that the US28 signalosome converges with RhoA and EGFR signal transduction pathways, sharing multiple mediators that are major actors in processes such as cellular proliferation and differentiation. Integral members of the US28 signaling complex were validated in functional assays by immunoblot and small-molecule inhibitors. Importantly, we identified RhoGEFs as key US28 signaling intermediaries. In vitro latency and reactivation assays utilizing primary CD34+ hematopoietic progenitor cells (HPCs) treated with the small-molecule inhibitors Rhosin or Y16 indicated that US28 -RhoGEF interactions are required for efficient viral reactivation. These findings were recapitulated in vivo using a humanized mouse model where inhibition of RhoGEFs resulted in a failure of the virus to reactivate. Together, our data identifies multiple new proteins in the US28 interactome that play major roles in viral latency and reactivation, highlights the utility of proximity-sensor labeling to characterize protein interactomes, and provides insight into targets for the development of novel anti-HCMV therapeutics.


Assuntos
Citomegalovirus , Transdução de Sinais , Animais , Camundongos , Humanos , Citomegalovirus/fisiologia , Latência Viral , Diferenciação Celular , Células-Tronco Hematopoéticas
2.
J Virol ; 97(10): e0124123, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772824

RESUMO

IMPORTANCE: CD34+ hematopoietic progenitor cells (HPCs) are an important cellular reservoir for latent human cytomegalovirus (HCMV). Several HCMV genes are expressed during latency that are involved with the maintenance of the viral genome in CD34+ HPC. However, little is known about the process of viral reactivation in these cells. Here, we describe a viral protein, pUL8, and its interaction and stabilization with members of the Wnt/ß-catenin pathway as an important component of viral reactivation. We further define that pUL8 and ß-catenin interact with DVL2 via a PDZ-binding domain, and loss of UL8 interaction with ß-catenin-DVL2 restricts viral reactivation. Our findings will be instrumental in understanding the molecular processes involved in HCMV reactivation in order to design new antiviral therapeutics.


Assuntos
Antígenos CD34 , Citomegalovirus , Proteínas Desgrenhadas , Células-Tronco Hematopoéticas , Proteínas Virais , Ativação Viral , beta Catenina , Humanos , Antígenos CD34/metabolismo , beta Catenina/química , beta Catenina/metabolismo , Citomegalovirus/genética , Citomegalovirus/fisiologia , Proteínas Desgrenhadas/química , Proteínas Desgrenhadas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/virologia , Domínios PDZ , Proteínas Virais/química , Proteínas Virais/metabolismo , Latência Viral/genética
3.
mBio ; 13(1): e0172421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012351

RESUMO

Human cytomegalovirus (HCMV) is a highly prevalent beta-herpesvirus and a significant cause of morbidity and mortality following hematopoietic and solid organ transplant, as well as the leading viral cause of congenital abnormalities. A key feature of the pathogenesis of HCMV is the ability of the virus to establish a latent infection in hematopoietic progenitor and myeloid lineage cells. The study of HCMV latency has been hampered by difficulties in obtaining and culturing primary cells, as well as an inability to quantitatively measure reactivating virus, but recent advances in both in vitro and in vivo models of HCMV latency and reactivation have led to a greater understanding of the interplay between host and virus. Key differences in established model systems have also led to controversy surrounding the role of viral gene products in latency establishment, maintenance, and reactivation. This review will discuss the details and challenges of various models including hematopoietic progenitor cells, monocytes, cell lines, and humanized mice. We highlight the utility and functional differences between these models and the necessary experimental design required to define latency and reactivation, which will help to generate a more complete picture of HCMV infection of myeloid-lineage cells.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Animais , Camundongos , Citomegalovirus/genética , Latência Viral/genética , Linhagem Celular , Células-Tronco Hematopoéticas , Ativação Viral/genética
4.
mBio ; 12(2)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824207

RESUMO

Human cytomegalovirus (HCMV) microRNAs play essential roles in latency and reactivation in CD34+ hematopoietic progenitor cells (HPCs) via regulation of viral and cellular gene expression. In the present study, we show that HCMV miR-US25-1 targets RhoA, a small GTPase required for CD34+ HPC self-renewal, proliferation, and hematopoiesis. Expression of miR-US25-1 impairs signaling through the nonmuscle myosin II light chain, which leads to a block in cytokinesis and an inhibition of proliferation. Moreover, infection with an HCMV mutant lacking miR-US25-1 resulted in increased proliferation of CD34+ HPCs and a decrease in the proportion of genome-containing cells at the end of latency culture. These observations provide a mechanism by which HCMV limits proliferation to maintain latent viral genomes in CD34+ HPCs.IMPORTANCE Each herpesvirus family establishes latency in a unique cell type. Since herpesvirus genomes are maintained as episomes, the virus needs to devise mechanisms to retain the latent genome during cell division. Alphaherpesviruses overcome this obstacle by infecting nondividing neurons, while gammaherpesviruses tether their genome to the host chromosome in dividing B cells. The betaherpesvirus human cytomegalovirus (HCMV) establishes latency in CD34+ hematopoietic progenitor cells (HPCs), but the mechanism used to maintain the viral genome is unknown. In this report, we demonstrate that HCMV miR-US25-1 downregulates expression of RhoA, a key cell cycle regulator, which results in inhibition of CD34+ HPC proliferation by blocking mitosis. Mutation of miR-US25-1 during viral infection results in enhanced cellular proliferation and a decreased frequency of genome-containing CD34+ HPCs. These results reveal a novel mechanism through which HCMV is able to regulate cell division to prevent viral genome loss during proliferation.


Assuntos
Antígenos CD34/genética , Proliferação de Células/genética , Citomegalovirus/genética , Genoma Viral , Células-Tronco Hematopoéticas/fisiologia , Interações Hospedeiro-Patógeno , MicroRNAs/genética , Latência Viral/genética , Proteína rhoA de Ligação ao GTP/genética , Antígenos CD34/imunologia , Antígenos CD34/metabolismo , Citomegalovirus/patogenicidade , Regulação para Baixo , Regulação da Expressão Gênica , Células HEK293 , Humanos , MicroRNAs/metabolismo , Mitose/genética , Transdução de Sinais/genética , Proteína rhoA de Ligação ao GTP/imunologia
5.
Pathogens ; 10(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668486

RESUMO

Human cytomegalovirus (HCMV) encodes 22 mature microRNAs (miRNAs), which regulate a myriad of cellular processes, including vesicular trafficking, cell cycle progression, apoptosis, and immune evasion, as well as viral gene expression. Recent evidence points to a critical role for HCMV miRNAs in mediating latency in CD34+ hematopoietic progenitor cells through modulation of cellular signaling pathways, including attenuation of TGFß and EGFR signaling. Moreover, HCMV miRNAs can act in concert with, or in opposition to, viral proteins in regulating host cell functions. Here, we comprehensively review the studies of HCMV miRNAs in the context of latency and highlight the novel processes that are manipulated by the virus using these small non-coding RNAs.

6.
PLoS Pathog ; 17(1): e1009255, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508041

RESUMO

Cytomegalovirus (CMV) causes clinically important diseases in immune compromised and immune immature individuals. Based largely on work in the mouse model of murine (M)CMV, there is a consensus that myeloid cells are important for disseminating CMV from the site of infection. In theory, such dissemination should expose CMV to cell-mediated immunity and thus necessitate evasion of T cells and NK cells. However, this hypothesis remains untested. We constructed a recombinant MCMV encoding target sites for the hematopoietic specific miRNA miR-142-3p in the essential viral gene IE3. This virus disseminated poorly to the salivary gland following intranasal or footpad infections but not following intraperitoneal infection in C57BL/6 mice, demonstrating that dissemination by hematopoietic cells is essential for specific routes of infection. Remarkably, depletion of NK cells or T cells restored dissemination of this virus in C57BL/6 mice after intranasal infection, while dissemination occurred normally in BALB/c mice, which lack strong NK cell control of MCMV. These data show that cell-mediated immunity is responsible for restricting MCMV to hematopoietic cell-mediated dissemination. Infected hematopoietic cells avoided cell-mediated immunity via three immune evasion genes that modulate class I MHC and NKG2D ligands (m04, m06 and m152). MCMV lacking these 3 genes spread poorly to the salivary gland unless NK cells were depleted, but also failed to replicate persistently in either the nasal mucosa or salivary gland unless CD8+ T cells were depleted. Surprisingly, CD8+ T cells primed after intranasal infection required CD4+ T cell help to expand and become functional. Together, our data suggest that MCMV can use both hematopoietic cell-dependent and -independent means of dissemination after intranasal infection and that cell mediated immune responses restrict dissemination to infected hematopoietic cells, which are protected from NK cells during dissemination by viral immune evasion. In contrast, viral replication within mucosal tissues depends on evasion of T cells.


Assuntos
Infecções por Herpesviridae/imunologia , Evasão da Resposta Imune , Imunidade Celular , Muromegalovirus/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/virologia , Infecções por Herpesviridae/virologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Muromegalovirus/genética , Muromegalovirus/fisiologia , Replicação Viral
7.
mSphere ; 6(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33408225

RESUMO

Human cytomegalovirus (HCMV) infection of myeloid lineage cells, such as CD34+ hematopoietic progenitor cells (HPCs) or monocytes, results in the upregulation of antiapoptotic cellular proteins that protect the newly infected cells from programmed cell death. The mechanisms used by HCMV to regulate proapoptotic cellular proteins upon infection of CD34+ HPCs have not been fully explored. Here, we show that HCMV utilizes pUL7, a secreted protein that signals through the FLT3 receptor, and miR-US5-1 and miR-UL112-3p to reduce the abundance and activity of the proapoptotic transcription factor FOXO3a at early times after infection of CD34+ HPCs. Regulation of FOXO3a by pUL7, miR-US5-1, and miR-UL112 results in reduced expression of the proapoptotic BCL2L11 transcript and protection of CD34+ HPCs from virus-induced apoptosis. These data highlight the importance of both viral proteins and microRNAs (miRNAs) in protecting CD34+ HPCs from apoptosis at early times postinfection, allowing for the establishment of latency and maintenance of viral genome-containing cells.IMPORTANCE Human cytomegalovirus (HCMV) causes serious disease in immunocompromised individuals and is a significant problem during transplantation. The virus can establish a latent infection in CD34+ hematopoietic progenitor cells (HPCs) and periodically reactivate to cause disease in the absence of an intact immune system. What viral gene products are required for successful establishment of latency is still not fully understood. Here, we show that both a viral protein and viral miRNAs are required to prevent apoptosis after infection of CD34+ HPCs. HCMV pUL7 and miRNAs miR-US5-1 and miR-UL112-3p act to limit the expression and activation of the transcription factor FOXO3a, which in turn reduces expression of proapoptotic gene BCL2L11 and prevents virus-induced apoptosis in CD34+ HPCs.


Assuntos
Antígenos CD34/genética , Apoptose , Citomegalovirus/genética , Células-Tronco Hematopoéticas/virologia , MicroRNAs/genética , Proteínas da Matriz Viral/genética , Antígenos CD34/imunologia , Células Cultivadas , Fibroblastos/virologia , Células HEK293 , Células-Tronco Hematopoéticas/imunologia , Humanos , MicroRNAs/classificação
8.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177198

RESUMO

In human cytomegalovirus (HCMV)-seropositive patients, CD34+ hematopoietic progenitor cells (HPCs) provide an important source of latent virus that reactivates following cellular differentiation into tissue macrophages. Multiple groups have used primary CD34+ HPCs to investigate mechanisms of viral latency. However, analyses of mechanisms of HCMV latency have been hampered by the genetic variability of CD34+ HPCs from different donors, availability of cells, and low frequency of reactivation. In addition, multiple progenitor cell types express surface CD34, and the frequencies of these populations differ depending on the tissue source of the cells and culture conditions in vitro In this study, we generated CD34+ progenitor cells from two different embryonic stem cell (ESC) lines, WA01 and WA09, to circumvent limitations associated with primary CD34+ HPCs. HCMV infection of CD34+ HPCs derived from either WA01 or WA09 ESCs supported HCMV latency and induced myelosuppression similar to infection of primary CD34+ HPCs. Analysis of HCMV-infected primary or ESC-derived CD34+ HPC subpopulations indicated that HCMV was able to establish latency and reactivate in CD38+ CD90+ and CD38+/low CD90- HPCs but persistently infected CD38- CD90+ cells to produce infectious virus. These results indicate that ESC-derived CD34+ HPCs can be used as a model for HCMV latency and that the virus either latently or persistently infects specific subpopulations of CD34+ cells.IMPORTANCE Human cytomegalovirus infection is associated with severe disease in transplant patients and understanding how latency and reactivation occur in stem cell populations is essential to understand disease. CD34+ hematopoietic progenitor cells (HPCs) are a critical viral reservoir; however, these cells are a heterogeneous pool with donor-to-donor variation in functional, genetic, and phenotypic characteristics. We generated a novel system using embryonic stem cell lines to model HCMV latency and reactivation in HPCs with a consistent cellular background. Our study defined three key stem cell subsets with differentially regulated latent and replicative states, which provide cellular candidates for isolation and treatment of transplant-mediated disease. This work provides a direction toward developing strategies to control the switch between latency and reactivation.


Assuntos
Antígenos CD34/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/isolamento & purificação , Células-Tronco Hematopoéticas/virologia , Interações Hospedeiro-Patógeno , Células-Tronco Embrionárias Humanas/virologia , Ativação Viral , Latência Viral , Células Cultivadas , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/patologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Transdução de Sinais
9.
mSphere ; 5(4)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32759334

RESUMO

Regulation of epidermal growth factor (EGF) receptor (EGFR) signaling is critical for the replication of human cytomegalovirus (HCMV) as well as latency and reactivation in CD34+ hematopoietic progenitor cells. HCMV microRNAs (miRNAs) provide a means to modulate the signaling activated by EGF through targeting components of the EGFR signaling pathways. Here, we demonstrate that HCMV miR-US5-2 directly downregulates the critical EGFR adaptor protein GAB1 that mediates activation and sustained signaling through the phosphatidylinositol 3-kinase (PI3K) and MEK/extracellular signal-regulated kinase (ERK) pathways and cellular proliferation in response to EGF. Expression of HCMV UL138 is regulated by the transcription factor early growth response gene 1 (EGR1) downstream of EGFR-induced MEK/ERK signaling. We show that by targeting GAB1 and attenuating MEK/ERK signaling, miR-US5-2 indirectly regulates EGR1 and UL138 expression, which implicates the miRNA in critical regulation of HCMV latency.IMPORTANCE Human cytomegalovirus (HCMV) causes significant disease in immunocompromised individuals, including transplant patients. HCMV establishes latency in hematopoietic stem cells in the bone marrow. The mechanisms governing latency and reactivation of viral replication are complex and not fully understood. HCMV-encoded miRNAs are small regulatory RNAs that reduce protein expression. In this study, we found that the HCMV miRNA miR-US5-2 targets the epidermal growth factor receptor (EGFR) adaptor protein GAB1 which directly affects downstream cellular signaling pathways activated by EGF. Consequently, miR-US5-2 blocks the EGF-mediated proliferation of human fibroblasts. Early growth response gene 1 (EGR1) is a transcription factor activated by EGFR signaling that regulates expression of HCMV UL138. We show that miR-US5-2 regulates UL138 expression through GAB1-mediated downregulation of the signaling pathways that lead to EGR1 expression. These data suggest that miR-US5-2, through downregulation of GAB1, could play a critical role during reactivation from latency by reducing proliferation and UL138 expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Receptores ErbB/genética , MicroRNAs/genética , Transdução de Sinais , Proteínas Virais/genética , Proliferação de Células , Células Cultivadas , Citomegalovirus , Regulação para Baixo , Células Endoteliais/virologia , Receptores ErbB/metabolismo , Fibroblastos/virologia , Regulação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas Virais/metabolismo
10.
Cell Host Microbe ; 27(1): 104-114.e4, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31866424

RESUMO

Infection with human cytomegalovirus (HCMV) remains a significant cause of morbidity and mortality following hematopoietic stem cell transplant (HSCT) because of various hematologic problems, including myelosuppression. Here, we demonstrate that latently expressed HCMV miR-US5-2 downregulates the transcriptional repressor NGFI-A binding protein (NAB1) to induce myelosuppression of uninfected CD34+ hematopoietic progenitor cells (HPCs) through an increase in TGF-ß production. Infection of HPCs with an HCMVΔmiR-US5-2 mutant resulted in decreased TGF-ß expression and restoration of myelopoiesis. In contrast, we show that infected HPCs are refractory to TGF-ß signaling as another HCMV miRNA, miR-UL22A, downregulates SMAD3, which is required for maintenance of latency. Our data suggest that latently expressed viral miRNAs manipulate stem cell homeostasis by inducing secretion of TGF-ß while protecting infected HPCs from TGF-ß-mediated effects on viral latency and reactivation. These observations provide a mechanism through which HCMV induces global myelosuppression following HSCT while maintaining lifelong infection in myeloid lineage cells.


Assuntos
Citomegalovirus , Células-Tronco Hematopoéticas/virologia , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Latência Viral , Antígenos CD34/metabolismo , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/metabolismo , Regulação para Baixo , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Células Mieloides/metabolismo , Células Mieloides/virologia , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo , Ativação Viral , Latência Viral/genética , Latência Viral/fisiologia
11.
PLoS Pathog ; 15(11): e1007854, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725809

RESUMO

Reactivation of latent Human Cytomegalovirus (HCMV) in CD34+ hematopoietic progenitor cells (HPCs) is closely linked to hematopoiesis. Viral latency requires maintenance of the progenitor cell quiescence, while reactivation initiates following mobilization of HPCs to the periphery and differentiation into CD14+ macrophages. Early growth response gene 1 (EGR-1) is a transcription factor activated by Epidermal growth factor receptor (EGFR) signaling that is essential for the maintenance of CD34+ HPC self-renewal in the bone marrow niche. Down-regulation of EGR-1 results in mobilization and differentiation of CD34+ HPC from the bone marrow to the periphery. In the current study we demonstrate that the transcription factor EGR-1 is directly targeted for down-regulation by HCMV miR-US22 that results in decreased proliferation of CD34+ HPCs and a decrease in total hematopoietic colony formation. We also show that an HCMV miR-US22 mutant fails to reactivate in CD34+ HPCs, indicating that expression of EGR-1 inhibits viral reactivation. Since EGR-1 promotes CD34+ HPC self-renewal in the bone marrow niche, HCMV miR-US22 down-regulation of EGR-1 is a necessary step to block HPC self-renewal and proliferation to induce a cellular differentiation pathway necessary to promote reactivation of virus.


Assuntos
Proliferação de Células , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células-Tronco Hematopoéticas/citologia , MicroRNAs/genética , Ativação Viral , Diferenciação Celular , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Hematopoese , Células-Tronco Hematopoéticas/virologia , Interações Hospedeiro-Patógeno , Humanos , Transdução de Sinais
12.
mBio ; 10(4)2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431555

RESUMO

Human cytomegalovirus (HCMV) infection of CD34+ hematopoietic progenitor cells (CD34+ HPCs) provides a critical reservoir of virus in stem cell transplant patients, and viral reactivation remains a significant cause of morbidity and mortality. The HCMV chemokine receptor US28 is implicated in the regulation of viral latency and reactivation. To explore the role of US28 signaling in latency and reactivation, we analyzed protein tyrosine kinase signaling in CD34+ HPCs expressing US28. US28-ligand signaling in CD34+ HPCs induced changes in key regulators of cellular activation and differentiation. In vitro latency and reactivation assays utilizing CD34+ HPCs indicated that US28 was required for viral reactivation but not latency establishment or maintenance. Similarly, humanized NSG mice (huNSG) infected with TB40E-GFP-US28stop failed to reactivate upon treatment with granulocyte-colony-stimulating factor, but viral genome levels were maintained. Interestingly, HCMV-mediated changes in hematopoiesis during latency in vivo and in vitro was also dependent upon US28, as US28 directly promoted differentiation toward the myeloid lineage. To determine whether US28 constitutive activity and/or ligand-binding activity were required for latency and reactivation, we infected both huNSG mice and CD34+ HPCs in vitro with HCMV TB40E-GFP containing the US28-R129A mutation (no CA) or Y16F mutation (no ligand binding). TB40E-GFP-US28-R129A was maintained during latency and exhibited normal reactivation kinetics. In contrast, TB40E-GFP-US28-Y16F exhibited high levels of viral genome during latency and reactivation, indicating that the virus did not establish latency. These data indicate that US28 is necessary for viral reactivation and ligand binding activity is required for viral latency, highlighting the complex role of US28 during HCMV latency and reactivation.IMPORTANCE Human cytomegalovirus (HCMV) can establish latency following infection of CD34+ hematopoietic progenitor cells (HPCs), and reactivation from latency is a significant cause of viral disease and accelerated graft failure in bone marrow and solid-organ transplant patients. The precise molecular mechanisms of HCMV infection in HPCs are not well defined; however, select viral gene products are known to regulate aspects of latency and reactivation. The HCMV-encoded chemokine receptor US28, which binds multiple CC chemokines as well as CX3CR1, is expressed both during latent and lytic phases of the virus life cycle and plays a role in latency and reactivation. However, the specific timing of US28 expression and the role of ligand binding in these processes are not well defined. In this report, we determined that US28 is required for reactivation but not for maintaining latency. However, when present during latency, US28 ligand binding activity is critical to maintaining the virus in a quiescent state. We attribute the regulation of both latency and reactivation to the role of US28 in promoting myeloid lineage cell differentiation. These data highlight the dynamic and multifunctional nature of US28 during HCMV latency and reactivation.


Assuntos
Antígenos CD34/metabolismo , Citomegalovirus/fisiologia , Células-Tronco Hematopoéticas/virologia , Ligantes , Receptores de Quimiocinas/metabolismo , Proteínas Virais/metabolismo , Latência Viral/fisiologia , Animais , Diferenciação Celular , Citomegalovirus/genética , Citomegalovirus/patogenicidade , Genoma Viral , Hematopoese , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Receptores de Quimiocinas/genética , Transdução de Sinais , Proteínas Virais/genética , Ativação Viral/genética , Ativação Viral/fisiologia
13.
Noncoding RNA ; 4(4)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30360396

RESUMO

It is now well appreciated that microRNAs (miRNAs) play a critical role in the lifecycles of many herpes viruses. The human cytomegalovirus (HCMV) replication cycle varies significantly depending on the cell type infected, with lytic replication occurring in fully-differentiated cells such as fibroblasts, endothelial cells, or macrophages, and latent infection occurring in less-differentiated CD14+ monocytes and CD34+ hematopoietic progenitor cells where viral gene expression is severely diminished and progeny virus is not produced. Given their non-immunogenic nature and their capacity to target numerous cellular and viral transcripts, miRNAs represent a particularly advantageous means for HCMV to manipulate viral gene expression and cellular signaling pathways during lytic and latent infection. This review will focus on our current knowledge of HCMV miRNA viral and cellular targets, and discuss their importance in lytic and latent infection, highlight the challenges of studying HCMV miRNAs, and describe how viral miRNAs can help us to better understand the cellular processes involved in HCMV latency.

14.
mBio ; 8(2)2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270578

RESUMO

Emerging evidence indicates that human cytomegalovirus (HCMV) manipulates host cell signaling pathways using both proteins and noncoding RNAs. Several studies have shown that HCMV induces NF-κB signaling early in infection, resulting in the induction of antiviral proinflammatory cytokines with a subsequent reduction of these cytokines late in infection. The mechanism for late cytokine reduction is unknown. In this study, we show that HCMV microRNAs (miRNAs) miR-US5-1 and miR-UL112-3p target the IκB kinase (IKK) complex components IKKα and IKKß to limit production of proinflammatory cytokines in response to interleukin 1ß (IL-1ß) and tumor necrosis factor alpha (TNF-α). Transfection of miR-UL112-3p and miR-US5-1 mimics reduced endogenous IKKα and IKKß protein levels, and site-directed mutagenesis of the 3' untranslated regions (UTRs) identified the binding sites for each miRNA. Infection with mutant viruses lacking these miRNAs resulted in increased levels of IKKα and IKKß proteins, an impaired ability to control NF-κB signaling at late times of lytic infection, and increased production of proinflammatory cytokines compared to wild-type virus in cell types relevant to HCMV infection in vivo These phenotypes were rescued by preexpression of miR-US5-1 and miR-UL112-3p in infected cells or by a miR-US5-1/miR-UL112-3p double mutant virus that expresses short hairpin RNAs (shRNAs) targeting IKKα and IKKß, demonstrating the gene specificity of the miRNAs. These observations describe a mechanism through which HCMV miRNAs expressed late in the infectious cycle downregulate proinflammatory cytokine production to create a cellular proviral environment.IMPORTANCE Human cytomegalovirus (HCMV) is a significant cause of morbidity and mortality in transplant recipients and causes hearing loss and mental retardation when acquired congenitally. Initial events during HCMV infection result in the activation of NF-κB signaling, which culminates in the production of IL-6, CCL5, and TNF-α. Several viruses have developed mechanisms to block the antiviral effects of these cytokines. We show here that two HCMV miRNAs, miR-US5-1 and miR-UL112-3p, specifically downregulate IKKα and IKKß signaling factors necessary to propagate NF-κB signaling and subsequent IL-6, CCL5, and TNF-α production. Regulation of these proinflammatory cytokines during lytic infection and during latency is critical to viral survival in the host.


Assuntos
Citocinas/metabolismo , Citomegalovirus/patogenicidade , Regulação para Baixo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , MicroRNAs/metabolismo , RNA Viral/metabolismo , Citomegalovirus/imunologia , Humanos , Quinase I-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo
15.
J Virol ; 84(3): 1366-75, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19939931

RESUMO

The herpes simplex virus (HSV) genome rapidly becomes associated with histones after injection into the host cell nucleus. The viral proteins ICP0 and VP16 are required for efficient viral gene expression and have been implicated in reducing the levels of underacetylated histones on the viral genome, raising the possibility that high levels of underacetylated histones inhibit viral gene expression. The U2OS osteosarcoma cell line is permissive for replication of ICP0 and VP16 mutants and appears to lack an innate antiviral repression mechanism present in other cell types. We therefore used chromatin immunoprecipitation to determine whether U2OS cells are competent to load histones onto HSV DNA and, if so, whether ICP0 and/or VP16 are required to reduce histone occupancy and enhance acetylation in this cell type. High levels of underacetylated histone H3 accumulated at several locations on the viral genome in the absence of VP16 activation function; in contrast, an ICP0 mutant displayed markedly reduced histone levels and enhanced acetylation, similar to wild-type HSV. These results demonstrate that U2OS cells are competent to load underacetylated histones onto HSV DNA and uncover an unexpected role for VP16 in modulating chromatin structure at viral early and late loci. One interpretation of these findings is that ICP0 and VP16 affect viral chromatin structure through separate pathways, and the pathway targeted by ICP0 is defective in U2OS cells. We also show that HSV infection results in decreased histone levels on some actively transcribed genes within the cellular genome, demonstrating that viral infection alters cellular chromatin structure.


Assuntos
Proteína Vmw65 do Vírus do Herpes Simples/fisiologia , Histonas/metabolismo , Proteínas Imediatamente Precoces/fisiologia , Osteossarcoma/virologia , Ubiquitina-Proteína Ligases/fisiologia , Acetilação , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Perfilação da Expressão Gênica , Herpesvirus Humano 1/genética , Humanos , Osteossarcoma/patologia
16.
J Virol ; 83(17): 8976-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19535444

RESUMO

Herpes simplex virus VP16 and ICP0 mutants replicate efficiently in U2OS osteosarcoma cells but are restricted in other cell types. We previously showed that the restrictive phenotype is dominant in a transient cell fusion assay, suggesting that U2OS cells lack an antiviral mechanism present in other cells. Recent data indicate that unscheduled membrane fusion events can activate the expression of interferon-stimulated genes (ISGs) in fibroblasts, raising the possibility that our earlier results were due to a fusion-induced antiviral state. However, we show here that the permissive phenotype is also extinguished following fusion with Vero cells in the absence of ISG induction.


Assuntos
Fusão Celular , Proteína Vmw65 do Vírus do Herpes Simples/deficiência , Proteínas Imediatamente Precoces/deficiência , Interferons/biossíntese , Simplexvirus/imunologia , Simplexvirus/fisiologia , Ubiquitina-Proteína Ligases/deficiência , Replicação Viral , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Células Vero
17.
Virology ; 352(1): 237-52, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16750236

RESUMO

HSV regulatory proteins VP16 and ICP0 play key roles in launching the lytic program of viral gene expression in most cell types. However, these activation functions are dispensable in U2OS osteosarcoma cells, suggesting that this cell line either expresses an endogenous activator of HSV gene expression or lacks inhibitory mechanisms that are inactivated by VP16 and ICP0 in other cells. To distinguish between these possibilities, we examined the phenotypes of somatic cell hybrids formed between U2OS cells and highly restrictive HEL fibroblasts. The U2OS-HEL heterokarya were as non-permissive as HEL cells, a phenotype that could be overcome by providing either VP16 or ICP0 in trans. Our data indicate that human fibroblasts contain one or more inhibitory factors that act within the nucleus to limit HSV gene expression and argue that VP16 and ICP0 stimulate viral gene expression at least in part by counteracting this innate antiviral defence mechanism.


Assuntos
Fibroblastos/imunologia , Regulação Viral da Expressão Gênica , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Células Híbridas/virologia , Proteínas Imediatamente Precoces/metabolismo , Imunidade Inata , Simplexvirus/patogenicidade , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular/imunologia , Linhagem Celular Tumoral/imunologia , Fibroblastos/virologia , Humanos , Simplexvirus/genética , Simplexvirus/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA