RESUMO
Kidney biopsies are used sparingly to diagnose kidney injury in the clinic. Here we have conducted a small exploratory study to directly compare the low-grade kidney injury monitoring performance of serum safety biomarkers, novel urine safety biomarkers, microscopic histopathology and targeted gene expression alterations in kidney biopsy specimens in rhesus monkeys treated with tobramycin. Targeted gene expression increases were observed in the kidney biopsy samples and whole kidney sections for kidney injury molecule 1 (KIM-1), clusterin (CLU), osteopontin (OPN) messenger RNA transcripts. In addition, increases of the urinary kidney safety protein biomarkers including KIM-1, CLU, OPN were also observed. These increases in gene expression and urinary protein end point were in concordance with the eventual low-grade kidney lesions seen in terminal tissue sections. In contrast, conventional serum biomarkers blood urea nitrogen and serum creatinine were not as sensitive in monitoring kidney injury. Although these data do not support routinely adding kidney biopsies to regular toxicology studies, they provide evidence on the value and limitations of incorporating gene expression profiling on kidney biopsy specimens, further underscore the value of urinary kidney safety biomarkers for improved low-grade kidney injury monitoring, and open the door for future definitive studies.
Assuntos
Injúria Renal Aguda , Tobramicina , Injúria Renal Aguda/diagnóstico , Animais , Biomarcadores , Biópsia , Perfilação da Expressão Gênica , Rim/patologia , Macaca mulatta , Tobramicina/metabolismoRESUMO
Efforts to develop novel, interferon-sparing therapies for treatment of chronic hepatitis C (HCV) infection are contingent on the ability of combination therapies consisting of direct antiviral inhibitors to achieve a sustained virologic response. This work demonstrates a proof of concept that coadministration of the nucleoside analogue MK-0608 with the protease inhibitor MK-7009, both of which produced robust viral load declines as monotherapy, to an HCV-infected chimpanzee can achieve a cure of infection.
Assuntos
Antivirais/administração & dosagem , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Indóis/administração & dosagem , Pan troglodytes/virologia , Tubercidina/análogos & derivados , Carga Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Ciclopropanos , Relação Dose-Resposta a Droga , Esquema de Medicação , Quimioterapia Combinada , Hepacivirus/enzimologia , Hepacivirus/fisiologia , Hepatite C Crônica/virologia , Indóis/farmacologia , Indóis/uso terapêutico , Isoindóis , Lactamas Macrocíclicas , Leucina/análogos & derivados , Prolina/análogos & derivados , Inibidores de Proteases/administração & dosagem , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Sulfonamidas , Resultado do Tratamento , Tubercidina/administração & dosagem , Tubercidina/farmacologia , Tubercidina/uso terapêutico , Proteínas não Estruturais Virais/antagonistas & inibidoresRESUMO
Hepatitis C virus (HCV) infects an estimated 170 million individuals worldwide and is associated with an increased incidence of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Currently approved therapies to treat HCV infection consist of combinations of pegylated alpha interferon and ribavirin which result in a sustained viral response in 40 to 60% of patients. Efforts to develop improved therapies include the development of direct inhibitors of virally encoded enzymes such as the viral RNA-dependent RNA polymerase. A nucleoside analog, 2'-C-methyl-7-deaza-adenosine (MK-0608), has been shown to inhibit viral RNA replication in the subgenomic HCV genotype 1b replicon, with a 50% effective concentration (EC(50)) of 0.3 microM (EC(90) = 1.3 microM). To determine efficacy in vivo, MK-0608 was administered to HCV-infected chimpanzees, resulting in dose- and time-dependent decreases in plasma viral loads. In separate experiments, chimpanzees dosed for 7 days with MK-0608 at 0.2 and 2 mg per kg of body weight per day by intravenous administration experienced average reductions in viral load of 1.0 and >5 log(10) IU/ml, respectively. Two other HCV-infected chimpanzees received daily doses of 1 mg MK-0608 per kg via oral administration. After 37 days of oral dosing, one chimpanzee with a high starting viral load experienced a reduction in viral load of 4.6 log(10), and the viral load in the other chimpanzee fell below the limit of quantification (LOQ) of the HCV TaqMan assay (20 IU/ml). Importantly, viral load remained below the LOQ throughout the duration of dosing and for at least 12 days after dosing ended. The results demonstrate a robust antiviral effect on the administration of MK-0608 to HCV-infected chimpanzees.
Assuntos
Antivirais/administração & dosagem , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Nucleosídeos/administração & dosagem , Tubercidina/análogos & derivados , Animais , Antivirais/química , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/uso terapêutico , Área Sob a Curva , Relação Dose-Resposta a Droga , Esquema de Medicação , Hepacivirus/genética , Hepatite C/sangue , Hepatite C/virologia , Concentração Inibidora 50 , Estrutura Molecular , Nucleosídeos/química , Nucleosídeos/farmacocinética , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Pan troglodytes , RNA Viral/sangue , Fatores de Tempo , Tubercidina/administração & dosagem , Tubercidina/química , Tubercidina/farmacocinética , Tubercidina/farmacologia , Tubercidina/uso terapêutico , Carga ViralRESUMO
Lack of virus specific antibody response is commonly observed in both HIV-1-infected humans and SIV-infected monkeys with rapid disease progression. However, the mechanisms underlying this important observation still remain unclear. In a titration study of a SIVmac239 viral stock, three out of six animals with viral inoculation rapidly progressed to AIDS within 5 months. Unexpectedly, there was no obvious depletion of CD4(+) T cells in both peripheral and lymph node (LN) compartments in these animals. Instead, progressive depletion of proliferating B cells and disruption of the follicular dendritic cell (FDC) network in germinal centers (GC) was evident in the samples collected at as early as 20 days after viral challenge. This coincided with undetectable, or weak and transient, virus-specific antibody responses over the course of infection. In situ hybridization of SIV RNA in the LN samples revealed a high frequency of SIV productively infected cells and large amounts of accumulated viral RNA in the GCs in these animals. Early severe depletion of GC proliferating B cells and disruption of the FDC network may thus result in an inability to mount a virus-specific antibody response in rapid progressors, which has been shown to contribute to accelerated disease progression of SIV infection.
Assuntos
Linfonodos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia , Animais , Anticorpos Antivirais/sangue , Linfócitos B/citologia , Biópsia , Contagem de Células , Progressão da Doença , Centro Germinativo/imunologia , Centro Germinativo/virologia , Hiperplasia/patologia , Linfonodos/patologia , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/diagnóstico , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/imunologia , Carga ViralRESUMO
Simian-human immunodeficiency virus (SHIV) challenge studies in rhesus macaques were conducted to evaluate the efficacy of adenovirus-based vaccines in the context of different major histocompatibility complex class I genetic backgrounds and different vaccine compositions. Mamu-A*01 allele-negative rhesus monkeys were immunized with one of the following vaccine constructs: (i) replication-defective recombinant adenovirus type 5 (Ad5) expressing human immunodeficiency virus type 1 (HIV-1) Tat (Ad5/HIVTat); (ii) Ad5 vector expressing simian immunodeficiency virus (SIV) Gag (Ad5/SIVGag); (iii) Ad5 vector expressing the truncated HIV-1(jrfl) Env, gp140 (Ad5/gp140_jrfl); (iv) Ad5 vector expressing the SHIV-89.6P gp140 (Ad5/gp140_89.6P); or (v) the combination of Ad5/SIVGag and Ad5/gp140_jrfl. Following intravenous challenge with SHIV-89.6P, only those cohorts that received vaccines expressing Gag or Env exhibited an attenuation of the acute viremia and associated CD4-cell lymphopenia. While no prechallenge neutralizing antibody titers were detectable in either Ad5/gp140-vaccinated group, an accelerated neutralizing antibody response was observed in the Ad5/gp140_89.6P-vaccinated group upon viral challenge. The set-point viral loads in the Ad5/SIVGag- and Ad5/gp140_jrfl-vaccinated groups were associated with the overall strength of the induced cellular immune responses. To examine the contribution of Mamu-A*01 allele in vaccine efficacy against SHIV-89.6P challenge, Mamu-A*01-positive monkeys were immunized with Ad5/SIVGag. Vaccine-mediated protection was significantly more pronounced in the Mamu-A*01-positive monkeys than in Mamu-A*01-negative monkeys, suggesting the strong contributions of T-cell epitopes restricted by the Mamu-A*01 molecule. The implications of these results in the development of an HIV-1 vaccine will be discussed.
Assuntos
Vacinas contra a AIDS/imunologia , Síndrome da Imunodeficiência Adquirida/prevenção & controle , Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Produtos do Gene tat/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Adenoviridae/genética , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Contagem de Linfócito CD4 , Modelos Animais de Doenças , Produtos do Gene env/genética , Produtos do Gene tat/genética , Vetores Genéticos , HIV/genética , HIV/imunologia , Imunidade Celular , Macaca mulatta , Testes de Neutralização , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Carga Viral , Viremia , Produtos do Gene tat do Vírus da Imunodeficiência HumanaRESUMO
Over a 21-month period, three Beagle dogs and one mixed-breed dog at our facility developed fatal pneumonia. The four dogs, all purpose bred, came from three vendors and had received the standard canine vaccines prior to shipment. In each instance, the affected dog had been shipped to our facility within the past 10 days. Three cases presented as a peracute clinical syndrome, and all had gross and microscopic findings consistent with hemorrhagic pneumonia. Escherichia coli was isolated from the lungs of all four dogs. Results of testing of lung tissue for canine parainfluenza virus and canine adenovirus were negative. Escherichia coli was also isolated from blood of three of the four dogs. Serotyping of the E. coli isolates indicated that two were serotype 06 and two were 04. Isolates from all four dogs were positive for the virulence factors alpha hemolysin and cytotoxic necrotizing factor 1 and for the adhesin factor class-III papG allele. These traits place the isolates in the class of extraintestinal pathogenic E. coli, which is being increasingly implicated as a cause of extraintestinal infections in animals and humans and may represent a zoonotic risk to humans working with research dogs.
Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/isolamento & purificação , Hemorragia/veterinária , Pneumonia Bacteriana/veterinária , Animais , Cães , Escherichia coli/classificação , Escherichia coli/patogenicidade , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/patologia , Evolução Fatal , Feminino , Hemorragia/etiologia , Hemorragia/patologia , Pulmão/patologia , Masculino , Pneumonia Bacteriana/complicações , Pneumonia Bacteriana/patologia , Sorotipagem/veterinária , Traqueia/patologiaRESUMO
Expression of several major histocompatibility complex (MHC) class I alleles is associated with a protective effect against disease progression in both human immunodeficiency virus type 1 and simian immunodeficiency virus infection. To understand the mechanism underlying this effect, we investigated the expression of the MHC class I allele Mamu-A*01 in simian-human immunodeficiency virus (SHIV) infection, one of the major models for evaluation of AIDS vaccine candidates. We found that disease progression was significantly delayed in Mamu-A*01-positive rhesus monkeys infected with the highly pathogenic SHIV 89.6P. The delay corresponded not only to a noted Mamu-A*01-restricted dominant cytotoxic T-lymphocyte (CTL) response but also to a lower viral load in lymph nodes (LN) and, importantly, to minimal destruction of LN structure during early infection. In contrast, Mamu-A*01-negative monkeys exhibited massive destruction of LN structure with accompanying rapid disease progression. These data indicate that MHC class I allele-restricted CTL responses may play an important role in preservation of lymphoid tissue structure, thereby resulting in attenuation of disease progression in immunodeficiency virus infection.
Assuntos
Síndrome da Imunodeficiência Adquirida/imunologia , Genes MHC Classe I/fisiologia , Antígenos de Histocompatibilidade Classe I/genética , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vacinas contra a AIDS/imunologia , Alelos , Animais , Contagem de Linfócito CD4 , Células Dendríticas Foliculares/patologia , Progressão da Doença , Produtos do Gene gag/análise , Centro Germinativo/patologia , Linfonodos/virologia , Macaca mulatta , Carga ViralRESUMO
Recent studies of human immunodeficiency virus type 1 (HIV-1) infection in humans and of simian immunodeficiency virus (SIV) in rhesus monkeys have shown that resolution of the acute viral infection and control of the subsequent persistent infection are mediated by the antiviral cellular immune response. We comparatively assessed several vaccine vector delivery systems-three formulations of a plasmid DNA vector, the modified vaccinia Ankara (MVA) virus, and a replication incompetent adenovirus type 5 (Ad5) vector-expressing the SIV gag protein for their ability to elicit such immune responses in monkeys. The vaccines were tested either as a single modality or in combined modality regimens. Here we show that the most effective responses were elicited by a replication-incompetent Ad5 vector, used either alone or as a booster inoculation after priming with a DNA vector. After challenge with a pathogenic HIV-SIV hybrid virus (SHIV), the animals immunized with Ad5 vector exhibited the most pronounced attenuation of the virus infection. The replication-defective adenovirus is a promising vaccine vector for development of an HIV-1 vaccine.